問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^3+y^3+z^3=36 \\
xyz=6
\end{array}
\right.
\end{eqnarray}$
において、$x \gt y \gt z$を満たす解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^3+y^3+z^3=36 \\
xyz=6
\end{array}
\right.
\end{eqnarray}$
において、$x \gt y \gt z$を満たす解を求めよ。
単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#数学検定#数学検定1級
指導講師:
ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^3+y^3+z^3=36 \\
xyz=6
\end{array}
\right.
\end{eqnarray}$
において、$x \gt y \gt z$を満たす解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^3+y^3+z^3=36 \\
xyz=6
\end{array}
\right.
\end{eqnarray}$
において、$x \gt y \gt z$を満たす解を求めよ。
投稿日:2021.10.30