大学入試問題#811「方向性が見えれば、気合いで解ける」 #京都大学(1972) #式変形 - 質問解決D.B.(データベース)

大学入試問題#811「方向性が見えれば、気合いで解ける」 #京都大学(1972) #式変形

問題文全文(内容文):
実数または複素数の$x,y,z,a$について、
$x+y+z=a$
$x^3+y^3+z^3=a^3$
の2式が成立するとき、$x,y,z$のうちの少なくとも1つは$a$に等しいことを示せ。

出典:1972年京都大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数または複素数の$x,y,z,a$について、
$x+y+z=a$
$x^3+y^3+z^3=a^3$
の2式が成立するとき、$x,y,z$のうちの少なくとも1つは$a$に等しいことを示せ。

出典:1972年京都大学
投稿日:2024.05.06

<関連動画>

大学入試問題#903「記述の仕方が問われる」 #信州大学後期(2024)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$a_1=3$とする
$\displaystyle \frac{1}{4}a_n+\displaystyle \frac{3}{2} \lt a_n+1 \lt \displaystyle \frac{1}{3}a_n+\displaystyle \frac{4}{3}$
を満たすとき、$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2024年信州大学後期
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第2問〜ベクトルと漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
aは$a\neq 1$を満たす正の実数とする。xy平面上の点$P_1,P_2,\ldots\ldots,P_n,\ldots\ldots$および
$Q_1,Q_2,\ldots\ldots,Q_n,\ldots\ldots$が、すべての自然数nについて
$\overrightarrow{ P_nP_{n+1} }=(1-a)\overrightarrow{ P_nQ_n },  \overrightarrow{ Q_nQ_{n+1} }=(0, \frac{a^{-n}}{1-a})$
を満たしているとする。また$P_n$の座標を$(x_n,y_n)$とする。
(1)$x_{n+2}$を$a, x_n, x_{n+1}$で表せ。
(2)$x_1=0, x_2=1$のとき、数列$\left\{x_n\right\}$の一般項を求めよ。
(3)$y_1=\frac{a}{(1-a)^2}, y_2-y_1=1$のとき数列$\left\{y_n\right\}$の一般項を求めよ。

2022北海道大学理系過去問
この動画を見る 

早稲田 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

佐賀大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022年 佐賀大学 過去問

1枚のコインをくり返し投げ、表の出る回数が
ちょうど$n$回目で5回となる確率を$P_n$

①$P_n$を$n$の式で

②$P_n$の最大値
この動画を見る 
PAGE TOP