福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題

問題文全文(内容文):
数学$\textrm{III}$平均値の定理(4)
微分可能な関数$f(x)$が$f(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}$を満たしている。
$a_{n+1}=f(a_n)$で定義される数列$\left\{a_n\right\}$について、
$\lim_{n \to \infty}a_n=1$であることを示せ。
単元: #数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$平均値の定理(4)
微分可能な関数$f(x)$が$f(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}$を満たしている。
$a_{n+1}=f(a_n)$で定義される数列$\left\{a_n\right\}$について、
$\lim_{n \to \infty}a_n=1$であることを示せ。
投稿日:2021.09.20

<関連動画>

滋賀医科大 複雑な問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!=2^{an}m(n \geqq 2,m$奇数$)$

(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ


(2)
$a_{2n}-a_n$を$n$で表せ


(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ


(4)
$a_n \lt n$を表せ


(5)
$\sqrt[ n ]{ n! }$は無理数 示せ

出典:滋賀医科大学 過去問
この動画を見る 

【数B】数列:a1=1,a[n+1]=(a[n]-4)/(a[n]-3) (n=1,2,...)で定められた数列について次の問に答えよ。(1)a2,a3,a4を求め一般項a[n]を推定せよ 他

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
この動画を見る 

福田の数学〜明治大学2021年理工学部第2問〜格子点と確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの
を格子点と呼ぶ。$|x|+|y|=2n$を満たす格子点(x,\ y)全体の集合を$D_{2n}$とする。
(1)$D_4$は$\boxed{\ \ あ\ \ }$個の点からなる。一般に、$D_{2n}$は$\boxed{\ \ い\ \ }$個の点からなる。
(2)$D_{2n}$に属する点$(x,\ y)$で$|x-2n|+|y|=2n$を満たすものは全部で$\boxed{\ \ う\ \ }$個ある。
(3)$D_{2n}$に属する点$(x,\ y)$で$|x-n|+|y-n|=2n$を満たすものは全部で$\boxed{\ \ え\ \ }$個ある。
(4)$D_{2n}$から異なる2点$(x_1,\ y_1),\ (x_2,\ y_2)$を無作為に選ぶとき、
$|x_1-x_2|+|y_1-y_2|=2n$
が成り立つ確率は$\boxed{\ \ お\ \ }$である。

2021明治大学理工学部過去問
この動画を見る 

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 

福田の数学〜早稲田大学2025社会科学部第2問〜階差数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち

$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$

とする。次の問いに答えよ。

(1)$a_n=-\dfrac{1}{n}$のとき、

$b_n$を$n$の式で表す。

(2)$b_n=\dfrac{1}{n(n+1)}$のとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

(3)数列$\{b_n\}$が以下を満たすとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$

$2025$念早稲田大学社会科学部過去問題
この動画を見る 
PAGE TOP