整数問題(フェルマーの小定理) - 質問解決D.B.(データベース)

整数問題(フェルマーの小定理)

問題文全文(内容文):
$3^n+5^n-1$が$7$の倍数となる自然数$n$の条件を求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n+5^n-1$が$7$の倍数となる自然数$n$の条件を求めよ.
投稿日:2020.12.02

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k!=m^2$を満たす自然数$(m,n)$をすべて求めよ.
この動画を見る 

九州大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)Pを素数とし、kを0以上の整数とする。$2^{P-1}-1=P^k$を満たす
 P,Kの組をすべて求めよ。
この動画を見る 

整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る 

千葉大 整数問題 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
下記証明せよ
(1)
$2x^2-y^2=9$を満たす整数$x,y$は3の倍数である

(2)
$21x^2-10y^2=9$を満たす整数$x,y$は存在しない

出典:千葉大学 過去問
この動画を見る 

整数問題 大阪教育大附属天王寺

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数A,B,Cを求めよ。
$
\begin{eqnarray}
\left\{
\begin{array}{l}
A \div B \times C=12 \\
A \div B - C=1 \\
A \div B =10
\end{array}
\right.
\end{eqnarray}
$
大阪教育大学附属高等学校天王寺校舎
この動画を見る 
PAGE TOP