福田のおもしろ数学206〜x乗根の方程式の解 - 質問解決D.B.(データベース)

福田のおもしろ数学206〜x乗根の方程式の解

問題文全文(内容文):
$\sqrt[ x ]{ 36 } + \sqrt[ x ]{ 24 } = \sqrt[ x ]{ 16 }$ を満たす $x$ を求めよ。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt[ x ]{ 36 } + \sqrt[ x ]{ 24 } = \sqrt[ x ]{ 16 }$ を満たす $x$ を求めよ。
投稿日:2024.07.26

<関連動画>

練習問題15 教採模試(対数の性質)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n\in IN$
$\log m+\log \left(1+\dfrac{1}{m}\right)+\log \left(1+\dfrac{1}{m+1}\right)$
$+・・・+\log\left(1+\dfrac{1}{m+n-1}\right)$
$=\log \ m+\log\ n$

$m,n$の値を求めよ.
この動画を見る 

【短時間でポイントチェック!!】対数方程式・対数不等式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$\log_{3}x=2$
②$\log_{\sqrt{2}}x≧4$
③$\log_{\frac{1}{3}}x>2$
この動画を見る 

福田の数学〜東北大学2024年理系第2問〜対数不等式の証明と自然数解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

指数・対数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^x=9^y=2025$である.
$\dfrac{xy}{x+y}$の値を求めよ.
この動画を見る 
PAGE TOP