福田の数学〜早稲田大学2025教育学部第1問(4)〜2変数関数の最大 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2025教育学部第1問(4)〜2変数関数の最大

問題文全文(内容文):

$\boxed{1}$

(4)$4$つの辺$AB,BC,CD,DA$の長さが$1$である

四面体$ABCD$を考える。

そのような四面体の体積の最大値を求めよ。

$2025$年早稲田大学教育学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$4$つの辺$AB,BC,CD,DA$の長さが$1$である

四面体$ABCD$を考える。

そのような四面体の体積の最大値を求めよ。

$2025$年早稲田大学教育学部過去問題
投稿日:2025.07.20

<関連動画>

福田の数学〜慶應義塾大学2024環境情報学部第4問〜球の一部の体積と距離の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$xyz$空間において、不等式 $x^2+y^2+z^2\leqq |x|$ が定める立体の体積は$\frac{\fbox{アイ}}{\fbox{ウエ}}\pi$である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は$\fbox{オカ}$である。
(2)$xyz$空間において、不等式 $x^2+y^2+z^2\leqq|x|+|y|$ が定める立体の体積は$\frac{\fbox{キク}}{\fbox{ケコ}}\pi$である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は$\sqrt{\fbox{サシ}}$ である。
(3)$xyz$ 空間において、不等式 $x^2+y^2+z^2\leqq$$ |x| + |y| + |z| - \frac{1}{4}$ が定める立体の体積は$(\fbox{スセ}$$+\frac{\fbox{ソタ}}{\fbox{チツ}}\sqrt{\fbox{テト}})\pi$ である。また、原点を中心とする球面がこの立体と共有点をもつとき、球面の半径の最大値は $\frac{\fbox{ナニ}}{\fbox{ヌネ}}\sqrt{\fbox{ノハ}}$ $+\frac{\fbox{ヒフ}}{\fbox{ヘホ}}\sqrt{\fbox{マミ}}$ である。(ただし、$\fbox{ノハ} \le \fbox{マミ}$ とする。)
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$x^6-x^5+x^4-x^3+x^2-x+1$で割った余りを求めよ.
この動画を見る 

【高校数学】三角関数④~グラフの描き方~*裏技あり 4-5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数 グラフの描き方説明動画です
この動画を見る 

福田の数学〜早稲田大学2024社会科学部第1問〜領域における最大最小

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$連立不等式
y≦-\frac{2}{3}x+4, y≧x-1,x≧0,y≧0
の表す領域をDとする。点(x,y)が領域Dを動くとき、次の問いに答えよ。
$$(1)領域Dを座標平面上に図示せよ。$$
$$(2)-2x+yの最大値と、そのときのx,yの値を求めよ。$$
$$(3)2x+yの最大値と、そのときのx,yの値を求めよ。$$
$$(4)aがすべての実数を動くとき、ax+yの最大値をaで分類せよ。$$
この動画を見る 

上智大 住宅ローンは月々いくら?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
年利$5$%で毎年1万円積立預金20万円を超えるのは何年後か.
$\log_{10}2=0.3010$
$\log_{10}3=0.4771$
$\log_{10}7=0.8450$

2018上智大過去問
この動画を見る 
PAGE TOP