問題文全文(内容文):
関数 $y=a(x-\sin 2x)$ $ \displaystyle(-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2})$の最大値が$\pi$であるように、定数$a$の値を定めよ。
関数 $y=a(x-\sin 2x)$ $ \displaystyle(-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2})$の最大値が$\pi$であるように、定数$a$の値を定めよ。
チャプター:
0:00 オープニング
0:03 この問題の考え方、aの場合分け
1:55 a>0のとき
5:04 a<0のとき
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 $y=a(x-\sin 2x)$ $ \displaystyle(-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2})$の最大値が$\pi$であるように、定数$a$の値を定めよ。
関数 $y=a(x-\sin 2x)$ $ \displaystyle(-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2})$の最大値が$\pi$であるように、定数$a$の値を定めよ。
投稿日:2025.03.01





