【FULL】定期テスト直前対策!ベクトル解説動画フルパック流し【数B(新課程 数C)】 - 質問解決D.B.(データベース)

【FULL】定期テスト直前対策!ベクトル解説動画フルパック流し【数B(新課程 数C)】

問題文全文(内容文):
ベクトルのまとめ動画です。
ベクトルの基本から球面・平面の方程式まで
見たい内容のシーンをチャプターから選んで下さい!!
チャプター:

0:00 内容紹介
1:45 ベクトルの基本
7:46 ベクトルの大きさ
9:51 ベクトルの大きさの最小値
15:29 内積
21:20 角度を求める
24:50 2乗から大きさを求める
31:03 2乗から最小値を求める
33:27 三角形の面積の公式
39:22 三角形の面積の計算
41:50 位置ベクトル
48:20 内心ベクトル
52:09 内分点からベクトルを求める
59:45 直線の方程式
1:08:52 2直線のなす鋭角
1:13:18 点の存在範囲
1:21:33 空間ベクトルの基本
1:25:15 空間における三角形の面積
1:28:20 四面体における点の位置
1:32:35 空間における平面上の点
1:47:28 球面の方程式
1:55:22 平面の方程式
2:03:45 エンディング

単元: #平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルのまとめ動画です。
ベクトルの基本から球面・平面の方程式まで
見たい内容のシーンをチャプターから選んで下さい!!
投稿日:2023.11.14

<関連動画>

【数学B/平面ベクトル】ベクトルの内積(成分表示の内積計算)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$の内積と、そのなす角$\theta$を求めよ。
(1)$\vec{ a }=(4,2),\vec{ b }=(3,-6)$
(2)$\vec{ a }=(-1,1),\vec{ b }=(1-\sqrt{ 3 },1+\sqrt{ 3 })$
この動画を見る 

【数B】ベクトル:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、$OB+3BC=2AB$を満たしている。また、辺OAを2:1に内分する点を Dとし、$a=OA、c=OC$とする。
(1)OBをa,cを用いて表せ。
(2)2直線$OB,CD$の交点をP とする。$OPwpa,c$を用いて表せ。また、$CP:PD$を求めよ。
(3)$OA=3、OB=\sqrt{15},OC=4$ とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、$ON:NC$を求めよ。また、3直線$OB,OC,l$で囲まれてできる三角形の面積を求 めよ。
この動画を見る 

数学「大学入試良問集」【14−7ベクトルの等式と円】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第2問(1)〜正六角形の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)一辺の長さが2の正六角形ABCDEFにおいて、辺CDの中点をMとし、直線BEと直線AMの交点をPとする。このとき、$\overrightarrow{BC}$, $\overrightarrow{AM}$, $\overrightarrow{BP}$をそれぞれ$\overrightarrow{AB}$, $\overrightarrow{AF}$を用いて表すと$\overrightarrow{BC}$=$\boxed{\ \ ク\ \ }$, $\overrightarrow{AM}$=$\boxed{\ \ ケ\ \ }$, $\overrightarrow{BP}$=$\boxed{\ \ コ\ \ }$である。また、$\overrightarrow{AM}$と$\overrightarrow{BP}$の内積$\overrightarrow{AM}・\overrightarrow{BP}$の値は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP