【高校数学】 数Ⅱ-62 円と直線① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-62 円と直線①

問題文全文(内容文):
◎次の円の方程式を求めよう。

①中心が(1、2)、半径が3

②中心が原点、半径が4

③中心が(-1.2)で原点を通る

④中心が(-2.3)でX軸に接する

⑤中心が(4.-1)で点(1.1)を通る

⑥直径の両端が(-1.3). (1.-5)
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円の方程式を求めよう。

①中心が(1、2)、半径が3

②中心が原点、半径が4

③中心が(-1.2)で原点を通る

④中心が(-2.3)でX軸に接する

⑤中心が(4.-1)で点(1.1)を通る

⑥直径の両端が(-1.3). (1.-5)
投稿日:2015.06.23

<関連動画>

福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と放物線の位置関係(3)
円$x^2+(y-a)^2=r^2$ $(a \gt 0,r \gt 0) \ldots①$
放物線$ y=\displaystyle\frac{1}{2}x^2 \ldots②$
が次の条件を満たすとき$a$の範囲、$r$を$a$で表せ。
(1)原点$\rm O$で接し、かつ他に共有点を持たない。
(2)異なる2点で接する。
この動画を見る 

数学「大学入試良問集」【11−2 交点を通過する円】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#都立科学技術大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
直線$l:(1-k)x+(1+k)y+2k-14=0$は定数$k$の値によらず定点$A$を通る。
このとき、次の各問いに答えよ。
(1)
定点$A$の座標を求めよ。

(2)
$xy$平面上に点$B$をとる。
原点$O$と2点$A,B$を頂点とする三角形$OAB$が正三角形になるとき、正三角形$OAB$の外接円の中心の座標を求めよ。

(3)
直線$l$と円$C:x^2+y^2=16$の2つの交点を通る円のうちで、2点$`(-4,0),Q(2,0)$を通る円の方程式を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。
いま、円Bの半径を1とすると、円Cの半径は
$\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}$
である。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る 
PAGE TOP