微分でも解けるけど・・・【数学 入試問題】【慶應義塾大学 改題】 - 質問解決D.B.(データベース)

微分でも解けるけど・・・【数学 入試問題】【慶應義塾大学 改題】

問題文全文(内容文):
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。

慶應義塾大改題過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。

慶應義塾大改題過去問
投稿日:2022.05.20

<関連動画>

#高専 #極限_75

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \dfrac{1}{\sqrt{n^2+kn}}$を解け.
この動画を見る 

早稲田(商) 小問の難問

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$n\leqq (5+2\sqrt5)^{2019}\lt n+1$,$n$を$100$で割った余りを求めよ.

2019早稲田(商)過去問
この動画を見る 

【解けたら上位!】対数の難問 数学II

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】対数の難問解説動画です
-----------------
(1)$log_{10}2 \gt 0.3$を示せ

(2)$log_{10}(M+N) \geqq \displaystyle \frac{1}{2}(log_{10}M+log_{10}N)+log_{10} 2$を示せ

(3)$log_{10} 13\gt 1.1$を示せ
この動画を見る 

√の中に8がいっぱい!!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \sqrt{8\sqrt{8\sqrt{8}}}=2^\boxed{?}$
この動画を見る 

#数学検定準1級2次過去問#70「根性出すしかないんかなー」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^4(1-x)^4}{1+x^2} dx$

出典:数検準1級2次
この動画を見る 
PAGE TOP