【高校数学】2次関数の決定の例題~パターンを覚えて解こう~ 2-6.5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】2次関数の決定の例題~パターンを覚えて解こう~ 2-6.5【数学Ⅰ】

問題文全文(内容文):
次の条件を満たす2次関数を求めよ。

(1) 3点 (1,0)、(-3,0)(0,-6)を通る

(2) グラフが、放物線$y=-x^2$を平行移動したもので、点(1,3)を通り、
  頂点が直線$y=2x+1$上にある。

(3) グラフが、$x$軸から切りとる線分の長さが6で、頂点が点(2,-3) である。
チャプター:

00:00 はじまり

00:23 問題です

00:37 問題解説(1)

02:43 問題解説(2)

05:22 問題解説(3)

08:53 まとめ

09:30 問題と答え

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の条件を満たす2次関数を求めよ。

(1) 3点 (1,0)、(-3,0)(0,-6)を通る

(2) グラフが、放物線$y=-x^2$を平行移動したもので、点(1,3)を通り、
  頂点が直線$y=2x+1$上にある。

(3) グラフが、$x$軸から切りとる線分の長さが6で、頂点が点(2,-3) である。
投稿日:2020.12.31

<関連動画>

スイカに塩  小数と2次方程式  関西大学第一(改)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2 - 0.001 = 0$
関西大学第一高等学校
この動画を見る 

【2次関数の応用問題はこう解く!】最大値と最小値の応用問題を図でイメージする方法を解説!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ


$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
この動画を見る 

地道な解法にも工夫あり&ナイスな解法

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-2x^2-3x-1=0$の3つの解を$\alpha,\beta,\delta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)$の値を求めよ.
この動画を見る 

2次関数の決定【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
172 次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 $y=-3x^2+x-1$を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線$y=x^2-3x$を平行移動した曲線で,2点 (2,1),(4,5)を通る。
173 2つの放物線$y=x^2-3x, y=\dfrac{1}{2}x^2+ax+b$の頂点が一致するように,定数a,bの値を定めよ。
174(1) 放物線$y=x^2-3x+4$を平行移動した曲線で,点(2, 4)を通り,頂点が直線$y=2x+1$上にある放物線の方程式を求めよ。
  (2) 放物線$y=-2x^2+5x$を平行移動した曲線で,点(1, -3)を通り,頂点が放物線$y=x^2+4$上にある放物線の方程式を求めよ。
この動画を見る 

【高校数学】2次方程式3 5 ~例題で学ぶ判別式D~ 2-9.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)2次方程式x²-6x+m=0が異なる2つの実数解をもつように、定数mの値の範囲を求めよ。

(2)2次方程式x²-mx+2=0が重解をもつように、定数mの値を定めよ。

(3)2次関数y=-x²+2x+mのグラフとx軸の共有点の個数は、定数mの値によってどのように
  変わるか。
この動画を見る 
PAGE TOP