ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人 - 質問解決D.B.(データベース)

ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人

問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ

出典:2019年九州大学 過去問
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ

出典:2019年九州大学 過去問
投稿日:2019.09.02

<関連動画>

【数Ⅲ】【関数と極限】数列の極限5 ※問題文は概要欄

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列$\{ a_n \}, \{ b_n \}, \{ c_n \}$について、次の事柄は正しいか。
正しいものは証明し、正しくないものは、その反例をあげよ。
ただし、$\alpha$は定数とする。
(1) $\displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = \infty$ ならば $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0$
(2) $ \displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = 0$ ならば $ \displaystyle \lim_{n \to \infty}a_nb_n=0$
(3) $ \displaystyle b_n \lt a_n \lt c_n , \lim_{n \to \infty}(c_n-b_n)=0$ ならば $ \{ a_n \}$は収束する。
(4) $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0, \lim_{n \to \infty}a_n =\alpha$ ならば $\displaystyle \lim_{n \to \infty}b_n= \alpha$
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第3問〜逆関数と定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

実数$x$に対して、関数

$f(x)=\dfrac{1}{3}x+\sqrt{\dfrac{1}{9}x^2+8}$

がある。ただし、定義域は$x\geqq 0$である。

$y=f(x)$の逆関数を$y=g(x)$とする。

(1)$g(x)$を求めると、$g(x)=\boxed{ナ}$であり、

$g(x)$定義域は$\boxed{ニ}$である。

(2)$\displaystyle \int_{2\sqrt2}^{4}g(x)dx$を求めると$\boxed{ヌ}$である。

(3)$\displaystyle \int_{0}^{3} f(x) dx$を求めると$\boxed{ネ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

福田のわかった数学〜高校3年生理系011〜極限(10)極限関数

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{1}{n}\displaystyle\sqrt[n]{{}_{2n}\mathrm{P}_{n}}$を求めよ。
この動画を見る 

大学入試問題#477「よくある極限の問題」  藤田医科大学(2023) #極限

アイキャッチ画像
単元: #関数と極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(e^x-1)log(4x+1)}{x^2}$

出典:2023年藤田医科大学 入試問題
この動画を見る 

【数Ⅲ】【関数と極限】次の無限級数の和を求めよ。(1) Σ(1/3)^n・cos nπ(2) Σ(-1/3)^n・sin nπ/2

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよ。
(1)$\displaystyle\sum_{n=1}^{\infty} \left( \dfrac{1}{3} \right)^n \cos n\pi$

(2) $\displaystyle\sum_{n=1}^{\infty} \left( -\dfrac{1}{3} \right)^n \sin \dfrac{n\pi}{2}$
この動画を見る 
PAGE TOP