福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
投稿日:2023.07.21

<関連動画>

【数A】場合の数:塗り分け! ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第1問〜サイコロの目の約数倍数の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。
また、$Y=\frac{X_2X_3}{X_1}$とする。
(1)$X_1=2$のとき、Yが整数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。

(2)$X_1=3$のとき、Yが整数となる確率は$\frac{\boxed{ウ}}{\boxed{エ}}\ である。

(3)$X_1=4$のとき、Yが整数となる確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。

(4)Yが整数となる確率は$\frac{\boxed{クケ}}{\boxed{コサ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

【短時間でマスター!!】確率 じゃんけんの問題を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
確率 じゃんけんの問題
①3人でじゃんけんを1回するとき、ただ1人の勝者が決まる確率
②3人でじゃんけんを1回するとき、あいこになる確率
この動画を見る 

【共通テスト】数学1A解説!!大問3【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 3rd School
問題文全文(内容文):
数学1A 大問3解説動画です
この動画を見る 

完全順列(モンモールの問題)【高校数学】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#確率
指導講師: 受験メモ山本
問題文全文(内容文):
完全順列(モンモールの問題)の説明動画です
この動画を見る 
PAGE TOP