【高校数学】和の記号・シグマの公式の証明 3-8.5【数学B】 - 質問解決D.B.(データベース)

【高校数学】和の記号・シグマの公式の証明 3-8.5【数学B】

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
投稿日:2022.02.21

<関連動画>

【数学B/テスト対策】階差数列(一般項)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数列の一般項$a_n$を求めよ。
(1)$2,5,10,17,26,37…$
(2)$3,4,6,10,18,…$
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第2問〜二項定理と数列の部分和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}の初項から第n項までの和S_n、数列\left\{b_n\right\}の初項から第n項までの和T_n\\
はそれぞれ\\
S_n=\sum_{k=1}^n {}_n \mathrm{ C }_k, T_n=\sum_{k=1}^n k・{}_n \mathrm{ C }_k\\
で表される。\\
(1)x \gt y \geqq 1を満たす自然数x,yについて、\\
{}_x \mathrm{ C }_y={}_{x-1} \mathrm{ C }_y+{}_i \mathrm{ C }_j, y・{}_x \mathrm{ C }_y=x・{}_p \mathrm{ C }_q,\\
が成り立つ。i,j,p,qをそれぞれx,yを用いて表すと、i=\boxed{\ \ ス\ \ },j=\boxed{\ \ セ\ \ },\\
p=\boxed{\ \ ソ\ \ },q=\boxed{\ \ タ\ \ }である。\\
(2)a_2,b_4の値をそれぞれ求めるとa_2=\boxed{\ \ チ\ \ },b_4=\boxed{\ \ ツ\ \ }である。\\
(3)S_n,a_nをそれぞれnの式で表すと、S_n=\boxed{\ \ テ\ \ },a_n=\boxed{\ \ ト\ \ }である。\\
(4)b_nをnの式で表すと、b_n=\boxed{\ \ ナ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

福田のわかった数学〜高校1年生063〜場合の数(2)完全順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(2) 完全順列\hspace{140pt}\\
1,2,3,4を1列に並べたものをa_1a_2a_3a_4とする。\\
a_1≠1,a_2≠2,a_3≠3,a_4≠4を満たす並べ方は何通りあるか。
\end{eqnarray}
この動画を見る 

福田の1.5倍速演習〜合格する重要問題072〜上智大学2019年度理工学部第3問〜ガウス記号で定義された数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $\alpha=\log_23$とし、自然数nに対して
$a_n=[n\alpha]$, $b_n=\left[\displaystyle\frac{n\alpha}{\alpha-1}\right]$
とする。ただし、実数xに対して[x]はxを超えない最大の整数を表す。
(1)$a_5=\boxed{\ \ ス\ \ }$である。
(2)$b_3=k$とおくと、不等式$\displaystyle\frac{3^{k+c}}{2^k} \leqq 1 \lt \frac{3^{k+1+c}}{2^{k+1}}$が整数$c=\boxed{\ \ セ\ \ }$で成り立ち、
$b_3=\boxed{\ \ ソ\ \ }$であることがわかる。
(3)$a_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ タ\ \ }$である。
(4)$b_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ チ\ \ }$である。
(5)$a_n \leqq$ 50を満たす自然数nの個数をsとし、$b_n \leqq$ 50を満たす自然数nの個数をtとする。このとき、s+t=$\boxed{\ \ ツ\ \ }$である。

2019上智大学理工学部過去問
この動画を見る 

センター試験(追試)数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C_1=2$
$C_{n+1}=-C_n+n^2+3$

(1)
$C_{25}-C_{23}$の値を求めよ。

(2)
$C_{25}$の値を求めよ。

出典:2004年センター試験 追試問題
この動画を見る 
PAGE TOP