近江高校 台形の面積二等分 - 質問解決D.B.(データベース)

近江高校 台形の面積二等分

問題文全文(内容文):
四角形ABOCの面積を2等分する直線の式は?
*図は動画内参照

近江高等学校
単元: #数学(中学生)#中2数学#数Ⅱ#図形と方程式#点と直線#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABOCの面積を2等分する直線の式は?
*図は動画内参照

近江高等学校
投稿日:2021.08.23

<関連動画>

福田の1.5倍速演習〜合格する重要問題049〜早稲田大学2019年度商学部第2問〜折れ線の長さの最小値問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上において、放物線$y=x^2$上の点をP、円$(x-3)^2+(y-1)^2=1$上の
点をQ、直線$y=x-4$上の点をRとする。次の設問に答えよ。

(1)QR の最小値を求めよ。
(2)PR+QR の最小値を求めよ。

2019早稲田大学商学部過去問
この動画を見る 

【数Ⅱ】図形と方程式:点と直線の距離(最小値):平面上の2点をA(1,1),B(2,3)とする。点Pが放物線y=x²+4x+10上を動くとき△PABの面積の最小値を求めよ。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の2点をA(1,1),B(2,3)とする。点Pが放物線$y=x^2+4x+10$上を動くとき△PABの面積の最小値を求めよ。
この動画を見る 

福田の数学〜明治大学2024理工学部第3問〜放物線と折れ線の位置関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$座標平面上も曲線$y=x^2$を$C$、直線$y=\frac{3}{4}x-\frac{1}{4}$を$l$とする。$s$を実数とし、直線$x=s$を$m$とする。曲線$C$上の点$P(t,t^2)$に対し、$P$から直線$l$との交点$Q$とする。また、$P$から直線$m$に下ろした垂線と$m$との交点を$R$とする。
$(1)$点$P$と点$Q$の距離$PQ$を$l$の式で表すと、$PQ=\boxed{け}$である。
$(2)$点$P$と点$R$の距離$PR$を$s$と$l$の式で表すと、$PR=\boxed{こ}$である。
$(3)PQ$は$t=\boxed{さ}$のとき、最小値$\boxed{し}$をとる。
$(4)s=\frac{2}{5}$のとき、$PQ=PR$となる点$P$をすべて求め、その$x$座標を小さい順に並べると$\boxed{す}$となる。
$(5)$実数$s$を固定したとき、$PQ=PR$となるような点$P$の個数を$N_s$とする。$N_s=4$となる$s$の範囲は$\boxed{せ}$
この動画を見る 

福田の数学〜筑波大学2023年理系第1問〜3次関数の接線と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。

2023筑波大学理系過去問
この動画を見る 

福田のわかった数学〜高校2年生032〜知って得する平行・垂直条件(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 知って得する平行・垂直条件(1)
2直線
$ax-y-a+1=0 \ldots①$
$(a+2)x-ay+2a=0 \ldots②$
が次の条件を満たすとき、定数$a$の値を求めよ。
(1)平行である  (2)垂直である
この動画を見る 
PAGE TOP