福田の数学〜慶應義塾大学2024年商学部第4問〜くじ引きと条件付き確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年商学部第4問〜くじ引きと条件付き確率

問題文全文(内容文):
$\Large\boxed{4}$ あるくじ引き店には、くじが10本入っている箱が5箱ある。5箱のうち4箱には当たりくじが1本、はずれくじが9本入っており、この4箱を「通常の箱」と呼ぶ。また、残りの1箱には当たりくじが5本、はずれくじが5本入っており、この箱を「有利な箱」と呼ぶ。通常の箱と有利な箱は見た目は同じであり、見分けることはできない。
(i)まず、Aが店に入り、5箱のうちの1箱を無作為に選び、その箱からくじを1本引いた。Aの選んだ箱が通常の箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。また、Aの選んだ箱が有利な箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。したがって、Aの引いたくじがはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{ク}}{\boxed{ケコ}}$である。
(ii)(i)の後、Aは引いたくじをもとの箱に戻し、よくかき混ぜたあと、同じ箱からもう一度くじを1本引いた。Aの引いたくじが1回目、2回目ともにはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
(iii)(ii)の後、Aは引いたくじをもとの箱に戻して店を出た。その後、BとCが店に入った。Bは5箱のうち1箱を無作為に選び、CはBが選ばなかった4箱の中から1箱を無作為に選んだ。BはAと同じように、自分の選んだ箱からくじを1本引き、それをもとの箱に戻し、よくかき混ぜた後、同じ箱からもう一度くじを1本引いた。また、Cは自分の選んだ箱からくじを1本引いた。Bの引いたくじが1回目、2回目ともにはずれであり、かつ、Cが引いたくじが当たりであったときに、Bの選んだ箱が有利な箱である確率は$\frac{\boxed{タチ}}{\boxed{ツテト}}$であり、Cの選んだ箱が有利な箱である確率は$\frac{\boxed{ナニヌ}}{\boxed{ネノハ}}$である。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ あるくじ引き店には、くじが10本入っている箱が5箱ある。5箱のうち4箱には当たりくじが1本、はずれくじが9本入っており、この4箱を「通常の箱」と呼ぶ。また、残りの1箱には当たりくじが5本、はずれくじが5本入っており、この箱を「有利な箱」と呼ぶ。通常の箱と有利な箱は見た目は同じであり、見分けることはできない。
(i)まず、Aが店に入り、5箱のうちの1箱を無作為に選び、その箱からくじを1本引いた。Aの選んだ箱が通常の箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。また、Aの選んだ箱が有利な箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。したがって、Aの引いたくじがはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{ク}}{\boxed{ケコ}}$である。
(ii)(i)の後、Aは引いたくじをもとの箱に戻し、よくかき混ぜたあと、同じ箱からもう一度くじを1本引いた。Aの引いたくじが1回目、2回目ともにはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
(iii)(ii)の後、Aは引いたくじをもとの箱に戻して店を出た。その後、BとCが店に入った。Bは5箱のうち1箱を無作為に選び、CはBが選ばなかった4箱の中から1箱を無作為に選んだ。BはAと同じように、自分の選んだ箱からくじを1本引き、それをもとの箱に戻し、よくかき混ぜた後、同じ箱からもう一度くじを1本引いた。また、Cは自分の選んだ箱からくじを1本引いた。Bの引いたくじが1回目、2回目ともにはずれであり、かつ、Cが引いたくじが当たりであったときに、Bの選んだ箱が有利な箱である確率は$\frac{\boxed{タチ}}{\boxed{ツテト}}$であり、Cの選んだ箱が有利な箱である確率は$\frac{\boxed{ナニヌ}}{\boxed{ネノハ}}$である。
投稿日:2024.05.23

<関連動画>

場合の数 組み合わせ応用【セトリの算数がていねいに解説】※解答に誤りあり(概要欄に記載しています)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・4個の数字0,1,2,3を使ってできる次のような自然数は何個あるか。ただし、同じ数字を重複して使ってよいものとする。
(1)3桁の自然数
(2)3桁以下の自然数
(3)123より小さい自然数

・9個の要素を持つ集合の総数を求めよ。また、Aの2個の特定の要素を含むAの部分集合の総数を求めよ。

・(1)10人を2つの部屋A,Bに入れる方法は何通りあるか。ただし10人全員が同じ部屋に入ってもよいものとする。
(2)10人を二つの組A,Bに分ける方法は何通りあるか。
(3)10人を二つの組に分ける方法は何通りあるか。
この動画を見る 

ロト7全パターン買ったらどうなるか?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
ロト7を全パターン買ったらプラスですか?マイナスですか?
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第1問(3)〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)さいころを$6$回続けて投げる。

$3$の倍数の目が出る回数が$2$になる確率は

$\boxed{ウ}$である。

また、$3$の倍数の目が出た回数が$2$であったとき、

その$2$回が続けて起こる条件付き確率は$\boxed{エ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第1問(5)〜要素の個数の数え上げ

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(5)正の整数のうち、3の場椅子であるか、または10進法で表した時に3を含む$$ような数の集合を考える。この集合の要素を小さい順に並べた数列を考える。$$このとき、999は第\fcolorbox{black}{ White }{ニ}項である。$
$ニの解答群$
$(0)\ 333\ (1)\ 396\ (2)\ 414\ (3)\ 459\ (4)\ 495$
$(5)\ 513\ (6)\ 558\ (7)\ 612\ (8)\ 693\ (9)\ 756$
この動画を見る 

福田のわかった数学〜高校1年生088〜確率(8)反復試行の確率(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(2)
AとBが先に4勝したほうを勝ちとする試合をする。
1回の試合でAが勝つ確率をpとして引き分けはないものとする。
(1)6試合目でAが勝つ確率を求めよ。
(2)Aが勝つ確率を求めよ。
この動画を見る 
PAGE TOP