【高校数学】 数A-19 確率① ・ さいころ編Part.1 - 質問解決D.B.(データベース)

【高校数学】  数A-19  確率① ・ さいころ編Part.1

問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?

①目の和が6になる。
②少なくとも1個は3の目が出る。
③目の積が5の倍数になる。
④少なくとも2個の目が同じである。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?

①目の和が6になる。
②少なくとも1個は3の目が出る。
③目の積が5の倍数になる。
④少なくとも2個の目が同じである。
投稿日:2014.06.06

<関連動画>

福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率
で毎回ランダムに出すものとする。また通常のじゃんけんのように
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
ちょうど3回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}$である。

2022慶應義塾大学環境情報学部過去問
この動画を見る 

気付けば一瞬!!の確率の問題 東奥義塾

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣ 2⃣ 3⃣ 4⃣ 5⃣
の5枚のカードから3枚のカードを並べてできる3ケタの整数で
奇数となる確率は?

東奥義塾高等学校
この動画を見る 

【高校数学】  数A-24  確率⑥ ・ 色玉編 Part.2

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎袋の中に白玉6個、赤玉4個、青玉3個が入っている。
ここから、球を同時に4個とり出すとき、次の確率は?
①少なくとも2個青玉が出る。
②取り出した玉にどの色のものも含まれる。
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xの関数が印刷されているカード25枚が1つの袋に入っている。
その内訳は、11枚に$1-3x$、9枚に$1-2x$、4枚に$1-2x+2x^2$、1枚に$1-3x+5x^2$である。
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを
100回繰り返したところ、記録の内訳は$1-3x$が46回、$1-2x$が35回、$1-2x+2x^2$が15回、
$1-3x+5x^2$が4回であった。
(1)記録された関数の実数xにおける値を$a_1,a_2,\ldots,a_{100}$とおく。
$a_1,a_2,\ldots,a_{100}$の平均値は、xの値を定めるとそれに対応して値が定まるので、
xの関数である。この関数は$x=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$のとき最小となり、その値は$-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}$である。
(2)記録された関数の$x=0$から$x=1$までの定積分を$b_1,b_2,\ldots,b_{100}$とおく。
$b_1,b_2,\ldots,b_{100}$の平均値は$-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
分散は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
また、記録された関数の$x=1$における値を$c_1,c_2,\ldots,c_{100}$とおくとき、
100個のデータの組$(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})$の共分散は$\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている
関数の$x=1$における値が負である条件の下で、その関数の0から1までの定積分
が負である条件つき確率は$\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}$である。

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜反復試行の確率問題の練習に最適な問題〜慶應義塾大学2023年商学部第4問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
太郎は 15 個の球を、花子は幻個の球を持っている。による球のやり取りを 2 人の間で繰り返す。こから始めて、次の手順による球のやり取りを 2 人の間で繰り返す。
【1】 2 個のさいころを同時に投げる。
【 2 】① 2 個とも奇数の目が出たら、太郎が花子に 1 個の球を渡す。
   ② 2 個とも偶数の目が出たら、太郎が花子に 2 個の球を渡す。
   ③奇数の目と偶数の目 1 個ずつ出たら、花子が太郎に 3 個の球を渡す。
この手順【1】,【 2 】によるやり取りを、 7 回繰り返す。その結果、太郎と花子の持つ球の個数について、以下の間いに答えなさい。
( 1 )太郎と花子が同数の球を持っている確率は$\dfrac{\fbox{アイウ}}{\fbox{エオカキ}}$である。
( 2 )持っている球の数が、太郎と花子の 2 人とも最初と変わらない確率は$\dfrac{\fbox{クケコ}}{\fbox{サシスセ}}$である。
( 3 )太郎の持っている球の数が、花子の持っている球の数の半分である確率は$\dfrac{\fbox{ソタチ}}{\fbox{ツテトナ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP