福田の数学〜浜松医科大学2024医学部第2問〜日本シリーズ形式の確率とシグマに関する等式の証明 - 質問解決D.B.(データベース)

福田の数学〜浜松医科大学2024医学部第2問〜日本シリーズ形式の確率とシグマに関する等式の証明

問題文全文(内容文):
以下の問いに答えよ。なお、${}_n \mathrm{ C }_r$は二項係数を表す。
(1) AさんとBさんが将棋の対局を繰り返し行い、先に3回勝った方が優勝するものとする。AさんがBさんに1回の対局で勝つ確率は$p$であるとする。また各対局において引き分けはないものとする。このとき、Aさんが優勝する確率を$p$の式として表せ。
(2) (1) において $p = 0.75$ であるときに、Aさんが優勝する確率を、小数第3位を四捨五入して小数第2位まで求めよ。
(3) (1) において「先に3回」を「先に$N$回」 ($N$は2以上の自然数)にしたときの Aさんが優勝する確率を$p$と$N$の式として表せ。必要ならば和の記号$\sum$や二項係数${}_n \mathrm{ C }_r$を用いてもよい。
(4) すべての自然数$m$について
$\displaystyle \sum_{k=1}^m \displaystyle \frac{{}_{m+k} \mathrm{ C }_k}{2^k} = 2^m-1$
であることを証明せよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、${}_n \mathrm{ C }_r$は二項係数を表す。
(1) AさんとBさんが将棋の対局を繰り返し行い、先に3回勝った方が優勝するものとする。AさんがBさんに1回の対局で勝つ確率は$p$であるとする。また各対局において引き分けはないものとする。このとき、Aさんが優勝する確率を$p$の式として表せ。
(2) (1) において $p = 0.75$ であるときに、Aさんが優勝する確率を、小数第3位を四捨五入して小数第2位まで求めよ。
(3) (1) において「先に3回」を「先に$N$回」 ($N$は2以上の自然数)にしたときの Aさんが優勝する確率を$p$と$N$の式として表せ。必要ならば和の記号$\sum$や二項係数${}_n \mathrm{ C }_r$を用いてもよい。
(4) すべての自然数$m$について
$\displaystyle \sum_{k=1}^m \displaystyle \frac{{}_{m+k} \mathrm{ C }_k}{2^k} = 2^m-1$
であることを証明せよ。
投稿日:2024.08.22

<関連動画>

福田の一夜漬け数学〜順列・組合せ(6)〜組み分け(基本編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(1)9人を3人ずつA,B,Cの3組に分ける方法は何通りあるか。
(2)9人を3人ずつの3組に分ける方法は何通りあるか。
(3)9人を5人と4人の2組に分ける方法は何通りあるか。
(4)9人を5人,2人,2人の3組に分ける方法は何通りあるか。

${\Large\boxed{2}}$
(1)9人を2つの部屋A,Bに分けて入れる方法は何通りあるか。
 ただし空室ができないようにする。
(2)9人を2組に分ける方法は何通りあるか。
(3)9人を3つの部屋A,B,Cに分けて入れる方法は何通りあるか。
 ただし、空室ができないようにする。
(4)9人を3組に分ける方法は何通りあるか。
この動画を見る 

【数A】確率:東北大 2008年 大問4(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが次のルール (i), (i) に従って数直線上を移動するものとする。
(i)$1,2,3,4,5,6$の目が同じ割合で出るサイコロを振り, 出た目の数をkとする.
(ii)Pの座標aについて, $a\gt 0$ならば座標$a-k$の点へ移動し, $a\gt 0$ならば座標$a+k$の点へ移動する.
(iii)原点に移動したら終了し, そうでなければ(i) を繰り返す。

(2) Pの座標が$1,2,... 6$ のいずれかであるとき,
ちょうど n回サイコロを振って
原点で終了する確率を求めよ.
この動画を見る 

日本女子大 ビンゴ!の確率(ついてる人&ついてない人) Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#日本女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5\times 5$マスの方眼紙の各マスに1~25の数字をでたらめに配置して1から順に穴を開ける.
(1)1~5の番号に穴を開けたとき,穴が縦又は横に5つ並ぶ確率を求めよ.
(2)21まで開けたとき初めて穴が縦又は横に5つ並ぶ確率を求めよ.

日本女子大過去問
この動画を見る 

【高校数学】重複を許して取る組合せの例題~必死に解くで~ 1-12.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
袋の中に赤玉,青玉,白玉,黒玉がたくさん入ってる。
この袋から7個の玉を取り出すとき、玉の取り出し方は何通りあるか。

2⃣
1個のさいころを3回投げ、出た目を順に$a,b,c$とする。
次の場合は何通りあるか。
(i) $a \lt b \lt c$
(ii) $a \leqq b \leqq c$

3⃣
次の場合を満たす$x,y,z$は何通りか
(i) $x + y + z = 9, x,y,z$は負でない整数
(ii) $x + y + z = 15, x,y,z$は正の整数
この動画を見る 

【高校数学】原因の確率~不良品の確率など2題~ 2-9【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率

-----------------

2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
この動画を見る 
PAGE TOP