【高校数学】樹形図~改めて図と法則を考える~ 1-5【数学A】 - 質問解決D.B.(データベース)

【高校数学】樹形図~改めて図と法則を考える~ 1-5【数学A】

問題文全文(内容文):
樹形図 改めて図と法則を考える動画です
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
樹形図 改めて図と法則を考える動画です
投稿日:2020.05.12

<関連動画>

数学「大学入試良問集」【5−1 重複組み合わせ】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1つのさいころを続けて5回投げて、出た目を順に$x_1,x_2,x_3,x_4,x_5$とする。
このとき、$x_1 \leqq x_2 \leqq x_3$と$x_3 \geqq x_4 \geqq x_5$,両不等式が同時に成り立つ確率を求めよ。
この動画を見る 

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る 

福田の数学〜浜松医科大学2024医学部第2問〜日本シリーズ形式の確率とシグマに関する等式の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、${}_n \mathrm{ C }_r$は二項係数を表す。
(1) AさんとBさんが将棋の対局を繰り返し行い、先に3回勝った方が優勝するものとする。AさんがBさんに1回の対局で勝つ確率は$p$であるとする。また各対局において引き分けはないものとする。このとき、Aさんが優勝する確率を$p$の式として表せ。
(2) (1) において $p = 0.75$ であるときに、Aさんが優勝する確率を、小数第3位を四捨五入して小数第2位まで求めよ。
(3) (1) において「先に3回」を「先に$N$回」 ($N$は2以上の自然数)にしたときの Aさんが優勝する確率を$p$と$N$の式として表せ。必要ならば和の記号$\sum$や二項係数${}_n \mathrm{ C }_r$を用いてもよい。
(4) すべての自然数$m$について
$\displaystyle \sum_{k=1}^m \displaystyle \frac{{}_{m+k} \mathrm{ C }_k}{2^k} = 2^m-1$
であることを証明せよ。
この動画を見る 

頑張れば小中学生にもできる 東大入試問題 数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
3人でジャンケン
負けた人は以後参加できない。
k回目に1人の勝者が決まる確率を求めよ.

東大過去問
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$ 2人でサイコロを投げる。
1回目は$A$
$1,2,3\rightarrow$同じ人が投げる
$4,5\rightarrow$別の人が投げる
$6\rightarrow$勝ち、終了

(1)
$n$回目に$A$が投げる確率$a_{n}$は?

(2)
ちょうど$n$回目で$A$が勝つ確率は?

(3)
$n$回以内に$A$が勝つ確率は?

出典:一橋大学 過去問
この動画を見る 
PAGE TOP