【数Ⅲ】【関数と極限】グラフをかき、その連続性について調べよ。(1) y=lim 1+x/1+xΛ2n(2) y=lim x-1/1+|x|Λn(3) y=lim nsin2x+1/ncos²x+1 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】グラフをかき、その連続性について調べよ。(1) y=lim 1+x/1+xΛ2n(2) y=lim x-1/1+|x|Λn(3) y=lim nsin2x+1/ncos²x+1

問題文全文(内容文):
次の関数のグラフをかき、その連続性について調べよ。

(1) $y=\displaystyle \lim_{n\to\infty}\frac{1+x}{1+x^{2n}}$

(2) $y=\displaystyle \lim_{n\to\infty}\frac{x-1}{1+|x|^{n}}$

(3) $y=\displaystyle \lim_{n\to\infty}\frac{n\sin 2x+1}{n\cos^2 x+1}$
チャプター:

0:00 問題と方針
0:55 (1)の解説
3:08 (2)の解説
4:50 (3)の解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかき、その連続性について調べよ。

(1) $y=\displaystyle \lim_{n\to\infty}\frac{1+x}{1+x^{2n}}$

(2) $y=\displaystyle \lim_{n\to\infty}\frac{x-1}{1+|x|^{n}}$

(3) $y=\displaystyle \lim_{n\to\infty}\frac{n\sin 2x+1}{n\cos^2 x+1}$
投稿日:2026.02.19

<関連動画>

【数Ⅲ】数列の極限:次の極限値を求めよう。lim[n→∞](1-1/2²)(1-1/3²)…(1-1/n²)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{n\to\infty}\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)・・・\left(1-\dfrac{1}{n^2}\right)$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題039〜早稲田大学2019年度理工学部第2問〜正n角形の周の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
nは3以上の自然数とする。面積1の正n角形$P_n$を考え、その周の
長さを$L_n$とする。次の問いに答えよ。
(1)$(L_n)^2$を求めよ。
(2)$\lim_{n \to \infty}L_n$を求めよ。
(3)$n \lt k$ならば$(L_n)^2 \gt (L_k)^2$となることを示せ。

2019早稲田大学理工学部過去問
この動画を見る 

福田のおもしろ数学193〜マイナス無限大への極限はこわい

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{x \to - \infty} \frac{\sqrt{9x^6-x}}{x^3+6}$ を求めよ。
この動画を見る 

長岡技術科大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る 

【数Ⅲ】極限:関数の極限 ガウス記号を含む極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を調べよう。
(1)$\displaystyle \lim_{x\to 2}[x],$
(2)$\displaystyle \lim_{x\to 1}([2x]-[x])$
この動画を見る 
PAGE TOP