指数方程式 - 質問解決D.B.(データベース)

指数方程式

問題文全文(内容文):
実数解を求めよ.
$3^{2x^2-1}+2・3^{(x+1)^2}-5・3^{4(x+1)}=0$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^{2x^2-1}+2・3^{(x+1)^2}-5・3^{4(x+1)}=0$
投稿日:2021.06.06

<関連動画>

空間上の3本の直線

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
空間内の3本の直線l,m,nに対して、l⊥m、かつl⊥nならば、
常にm$/\!/$n
この動画を見る 

【数A】整数の性質:東京大学(理系)2003年 第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
この動画を見る 

綺麗な数字の並びの平方数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数であることを示せ.
$\underbrace{277 + \cdots + 7}_{n個}
\underbrace{88 + \cdots + 89}_{ n+1個}$
この動画を見る 

解けるようにできた方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$9^x+33^x=121^x$
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。

2022上智大学文系過去問
この動画を見る 
PAGE TOP