問題文全文(内容文):
$a=\displaystyle \frac{1+i}{\sqrt{ 3 }+i}$
$a^n$が正の実数となるような最小の自然数$n$
出典:日本女子大学 過去問
$a=\displaystyle \frac{1+i}{\sqrt{ 3 }+i}$
$a^n$が正の実数となるような最小の自然数$n$
出典:日本女子大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#日本女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{1+i}{\sqrt{ 3 }+i}$
$a^n$が正の実数となるような最小の自然数$n$
出典:日本女子大学 過去問
$a=\displaystyle \frac{1+i}{\sqrt{ 3 }+i}$
$a^n$が正の実数となるような最小の自然数$n$
出典:日本女子大学 過去問
投稿日:2019.02.07