福田の数学〜慶應義塾大学2024年看護医療学部第2問(2)〜2次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年看護医療学部第2問(2)〜2次方程式の解の存在範囲

問題文全文(内容文):
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
投稿日:2024.04.03

<関連動画>

福田の1日1題わかった数学〜高校2年生第2回〜高次方程式と整数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3-7x+n=0$ が
3つの整数解をもつように、
$n$の値を定めよ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。

$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は

$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。

2021上智大学文系過去問
この動画を見る 

バングラデシュ数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^5+y^5=31
\end{array}
\right.
\end{eqnarray}
$
この動画を見る 

バングラデシュ数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{cases}
x+y = 1 \\
x^5+y^5 = 31
\end{cases}
$

バングラデシュ数学オリンピック過去問
この動画を見る 

明治大 3倍角の公式と3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
この動画を見る 
PAGE TOP