問題文全文(内容文):
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
$\Large\boxed{2}$ (2)$m$を実数とする。$x$の2次方程式
$x^2$+$mx$+$m$+3=0
が異なる2つの虚数解をもつような$m$の値の範囲は$\boxed{\ \ シ\ \ }$であり、異なる2つの正の解をもつような$m$の値の範囲は$\boxed{\ \ ス\ \ }$である。
投稿日:2024.04.03