【数Ⅲ】【積分とその応用】区間a≦x≦bでf(x)≧0曲線y=f(x)とx軸および2直線x=a,x=bで囲まれy軸の周りに1回転させてできる体積は2π∫[a→b]xf(x)dxで与えられることを示せ。 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】区間a≦x≦bでf(x)≧0曲線y=f(x)とx軸および2直線x=a,x=bで囲まれy軸の周りに1回転させてできる体積は2π∫[a→b]xf(x)dxで与えられることを示せ。

問題文全文(内容文):
(1) 0≦a<bとする。関数f(x)を区間a≦x≦bで単調に増加する関数とし、
区間a≦x≦bでf(x)≧0とする。曲線y=f(x)とx軸および2直線x=a,x=bで囲まれた部分を、
y軸の周りに1回転させてできる立体の体積Vは
$V=2\pi\int_a^bxf(x)dx$……①で与えられることを示せ。

(2) (1)の①は、一般の関数f(x) (ただし、a≦x≦bでf(x)≧0)についても成り立つ。
これを利用して、曲線y=-x²+2xとx軸で囲まれた部分を、
y軸の周りに1回転させてできる立体の体積を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 0≦a<bとする。関数f(x)を区間a≦x≦bで単調に増加する関数とし、
区間a≦x≦bでf(x)≧0とする。曲線y=f(x)とx軸および2直線x=a,x=bで囲まれた部分を、
y軸の周りに1回転させてできる立体の体積Vは
$V=2\pi\int_a^bxf(x)dx$……①で与えられることを示せ。

(2) (1)の①は、一般の関数f(x) (ただし、a≦x≦bでf(x)≧0)についても成り立つ。
これを利用して、曲線y=-x²+2xとx軸で囲まれた部分を、
y軸の周りに1回転させてできる立体の体積を求めよ。
投稿日:2025.07.29

<関連動画>

大学入試問題#195 兵庫医科大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#兵庫医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{0}\displaystyle \frac{x^5}{(x^3-1)}\ dx$を計算せよ。

出典:兵庫医科大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きに動く2点P,QがPの速さはQの速さの2倍でAからBまで動くとき、△APQの面積の最大値を求めよ。

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きにそれぞれ一定の速さで動く2点P,Qがある。Pの速さはQの速さの2倍で、PがAからBまで動くとき、△APQの面積の最大値を求めよ。また,その時の∠BOQの大きさを求めよ。
この動画を見る 

【高校数学】毎日積分51日目 実践編②回転体シリーズ~場合分け~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標空間において,連立不等式
$x^2+y^2\leqq 1$
$|x|\leqq \sin z $
$|y|\leqq \sin z $
$0\leqq z \leqq \dfrac{\pi}{2}$
で定められる立体を$K$とする。
(1)$t$を$0\leqq t \leqq \dfrac{\pi}{2}$を満たす定数として、立体$K$を$z$軸に垂直な平面$z=t$で切ったときの断面積を$S(t)$とする。必要に応じて場合分けをして、$S(t)$を$t$の式で表せ。
(2)立体$K$のうち、2つの平面$z=0$と$z=\dfrac{\pi}{4}$ではさまれた部分の体積$V$を求めよ。
(3) 立体$K$の体積$W$を求めよ。
この動画を見る 

【数Ⅲ】【積分とその応用】次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。
(1) x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ) (0≦θ≦p)
(2) y=log(cosx) (0≦θ≦p)
この動画を見る 

【高校数学】毎日積分34日目【区分求積法】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
今回は共通テスト直後ということで、忘れがちな区分求積法について解説!
この動画を見る 
PAGE TOP