東工大 秀才栗崎 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東工大 秀才栗崎 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?

出典:1992年東京工業大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?

出典:1992年東京工業大学 過去問
投稿日:2019.02.24

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年理工学部第2問〜連立不等式の表す領域の面積と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ rを正の実数とし、円C_1:(x-2)^2+y^2=r^2、楕円C_2:\frac{x^2}{9}+y^2=1を考える。\\
(1)円C_1と楕円C_2の共有点が存在するようなrの値の範囲は\boxed{\ \ カ\ \ } \leqq r \leqq \boxed{\ \ キ\ \ }である。\\
(2)r=1のとき、C_1とC_2の共有点の座標を全て求めると\boxed{\ \ ク\ \ }である。\\
これらの共有点のうちy座標が正となる点のy座標をy_0とする。連立不等式\\
\\
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
0 \leqq y \leqq y_0\\
\end{array}\right. の表す領域の面積は\boxed{\ \ ケ\ \ }である。\\
\\
\\

(3)連立不等式
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
\displaystyle\frac{x^2}{9}+y^2 \geqq 1\\
y \geqq 0\\
\end{array}\right. の表す領域をDとする。Dをy軸のまわりに\\
1回転させてできる立体の体積は\boxed{\ \ コ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(7)\\
e^a(b-a) \lt e^b-e^a \lt e^b(b-a)\\
(ただし、a \lt b)
\end{eqnarray}
この動画を見る 

弘前大(医)3次方程式 極限 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#弘前大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
n自然数
$x^3+3nx^2-(3n+2)=0$
(1)全ての自然数nについて正の解をただ1つしかもたないことを示せ。
(2)各自然数nに対して正の解を$a_n$とする。
 $\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数aは正の定数とする。実数全体で定義された関数f(x)=\frac{|x+a|}{\sqrt{x^2+1}}について、\\
\\
次の問いに答えよ。\\
(1)f(x)がx=-aで微分可能であるかどうか調べよ。\\
(2)f(x)の最大値が\sqrt2となるように、定数aの値を定めよ。\\
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分\\
をx軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

数学「大学入試良問集」【18−4 微分と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{1}{\theta}(\sin\theta+\tan\theta) \gt 2$
この動画を見る 
PAGE TOP