息抜き 整数問題 - 質問解決D.B.(データベース)

息抜き 整数問題

問題文全文(内容文):
$n^4+4^n$が素数
自然数$n$をすべて求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^4+4^n$が素数
自然数$n$をすべて求めよ
投稿日:2019.10.10

<関連動画>

灘中 ちょっと合同式

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続した5つの整数の積が2441880 最初の整数は?

出典:2002年灘中学校 過去問
この動画を見る 

整数問題 華麗な論法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021m+1=7^n$を満たす自然数$m,n$が存在することを示せ.
この動画を見る 

関西大 フェルマーの小定理の証明

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは素数であり,m,kを自然数とする.
(1)${}_m \mathrm{ C }_0+{}_m \mathrm{ C }_1+{}_m \mathrm{ C }_2+・・・{}_m \mathrm{ C }_m-1+{}_m \mathrm{ C }_m$の値を求めよ.
(2)$1\leqq k\leqq P-1$のとき${}_P \mathrm{ C }_k$はPの倍数である.
(3)$2^P-2$はPの倍数である.

関西大過去問
この動画を見る 

2024一橋大後期数学 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$正の整数
$m^2-n^2=10!$を満たす$(m,n)$の組は何組?

出典:2024年一橋大学後期数学 過去問
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第3問〜有限小数の性質と論証

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
この動画を見る 
PAGE TOP