福田のおもしろ数学138〜シグマ計算 - 質問解決D.B.(データベース)

福田のおもしろ数学138〜シグマ計算

問題文全文(内容文):
k=1nk(k!) を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
k=1nk(k!) を求めよ。
投稿日:2024.05.14

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part2

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は    である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は    である。
(2)n回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率をpnとする。
pn+1pnを用いて表すとpn+1=    となり、これよりpnnを用いて表すとpn=    となる。
(3)n回目(n≧4)の操作を終えたとき、袋Aの中にn1個以上の玉が入っている確率は    であり、n2個以上の玉が入っている確率は    である。
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
an=2n+1
anのうち5で割り切れるものを小さい順に並べた数列をbkとする.

(1)bkを推定せよ.
(2)(1)の推定が全ての自然数kで成立することを証明せよ.

宮崎大過去問
この動画を見る 

大学入試問題#520「これは綺麗や~~」 東北大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
a1=S:実数
(n+2)an+1=n an+2

(1)
anを求めよ

(2)
n=1man=0のときSmで表せ

出典:2023年東北大学 入試問題
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 A,B,Cの3人が色のついた札を1枚ずつ持っている。初めにA,B,C
の持っている札の色はそれぞれ赤、白、青である。Aがサイコロを
投げて、3の倍数の目が出たらABと持っている札を交換し、
その他の目が出たらACと札を交換する。この試行をn回繰り返し
た後に赤い札をA,B,Cが持っている確率をそれぞれan,bn,cnとする。

(1)n2のとき、an,bn,cnan1,bn1,bn1で表せ。
(2)anを求めよ。
この動画を見る 

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、n回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率をpnとする。p2k+1を求めよ。(kは自然数とする)
この動画を見る 
PAGE TOP preload imagepreload image