これなに? - 質問解決D.B.(データベース)

これなに?

問題文全文(内容文):
オイラーの多面体定理解説動画です
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
オイラーの多面体定理解説動画です
投稿日:2024.03.26

<関連動画>

福田の数学〜上智大学2023年TEAP利用型文系第2問〜空間ベクトルと正八面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
2 図のような一辺の長さが1の正八面体ABCDEFがある。
2点P,Qはそれぞれ辺AD, BC上にあり
PQADかつPQBC
を満たすとする。
(1)ADBCのなす角は        πである。
(2)|AP|=        , |BQ|=        である。
(3)|PQ|=            である。
(4)平面EPQと直線BFの交点をRとすると|BR|=        である。
この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円C1, C2
C1={(x,y,0) | x2+y2=1}, C2={(0,y,z) | (y1)2+z2=1}
とする。次の設問に答えよ。
(1)C1上の2点とC2上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 

これ知ってる?

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
正四面体の体積を一瞬で出す方法を解説していきます.
この動画を見る 

福田の数学〜筑波大学2023年理系第3問〜球面に内接する四面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
3 座標空間内の原点Oを中心とする半径rの球面S上に4つの頂点がある四面体ABCDが
OA+OB+OC+OD=0
を満たしているとする。また三角形ABCの重心をGとする。
(1)OGODを用いて表せ。
(2)OAOB+OBOC+OCOArを用いて表せ。
(3)点Pが球面S上を動くとき、PAPB+PBPC+PCPAの最大値をrを用いて表せ。さらに、最大値をとるときの点Pに対して、|PG|をrを用いて表せ。

2023筑波大学理系過去問
この動画を見る 

嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
この動画を見る 
PAGE TOP preload imagepreload image