【高校数学】 数Ⅱ-28 2次方程式の解と判別式① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-28 2次方程式の解と判別式①

問題文全文(内容文):
◎次の2次方程式を解こう。

①$x^2=9$

②$(x+1)^2=3$

③$x^2-7$

④$(x-2)^2=-6$

⑤$x^2+x+1=0$

⑥$x^2-4x+8=0$
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式を解こう。

①$x^2=9$

②$(x+1)^2=3$

③$x^2-7$

④$(x-2)^2=-6$

⑤$x^2+x+1=0$

⑥$x^2-4x+8=0$
投稿日:2015.05.13

<関連動画>

2021一橋大 素数の個数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1000$以下の素数は$250$個以下であることを示せ.

2021一橋大過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
この動画を見る 

17神奈川県教員採用試験(数学:8番 積分【面積の最小値】)

アイキャッチ画像
単元: #数Ⅱ#2次関数#複素数と方程式#2次関数とグラフ#微分法と積分法#解と判別式・解と係数の関係#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
8⃣$y=x^2$と(-1,3)を通る直線lで囲まれた面積Sの最小値を求めよ。
この動画を見る 

福田の数学〜名古屋大学2024年文系第1問〜高次方程式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問いに答えよ。
(1)方程式$x^3$-$3x^2$-50=0 の実数解を求めよ。
(2)実数$p$, $q$が$p$+$q$=$pq$ を満たすとする。$X$=$pq$とおくとき、$p^3$+$q^3$を$X$で表せ。
(3)条件
$p^3$+$q^3$=50, $\displaystyle\frac{1}{p}$+$\displaystyle\frac{1}{q}$=1, $p$<$q$
を満たす0でない実数の組($p$, $q$)をすべて求めよ。
この動画を見る 

複素関数論⑬ 高専数学*4(複素積分の極限)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#複素数#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k\gt 0$,$C_k:z=(k-t)+it$であり,
$0\leqq t\leqq k$とするとき,以下を解け.

(1)$\vert z\vert \geqq \dfrac{k}{\sqrt2},\left\vert\dfrac{e^{iz}}{z}\right\vert \leqq \dfrac{\sqrt2 e^{-t}}{k}$

(2)$\displaystyle \lim_{k\to\infty} \displaystyle \int_{c_k}^{} \dfrac{e^{iz}}{z} dz=0$
この動画を見る 
PAGE TOP