福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} A_n=\left\{1,2,\ldots,n\right\}を、1からnまでの自然数の集合とする。SをA_nの部分集合\\
(空集合およびA_n自身も含む)としたとき、S'をSの要素それぞれに1を加えてできた\\
集合とする。またS''をS'の要素それぞれにさらに1を加えてできた集合とする。\\
たとえば、A_3=\left\{1,2,3\right\}の部分集合S=\left\{1,3\right\}の場合、S'=\left\{2,4\right\},S''=\left\{3,5\right\}\\
\\
(1)A_4=\left\{1,2,3,4\right\}の部分集合S=\left\{1,2,3\right\}はS \cup S'=A_4となる。このように\\
A_4の部分集合でS \cup S'=A_4となるものは\left\{1,2,3\right\}と\left\{1,\boxed{\ \ ア\ \ }\right\}の2つである。\\
\\
(2)A_nの部分集合SでS \cup S'=A_nとなるようなSの個数をa_nとすると、(1)から\\
分かるようにa_4=2であり\\
a_5=\boxed{\ \ イウ\ \ },a_6=\boxed{\ \ エオ\ \ },a_7=\boxed{\ \ カキ\ \ },a_8=\boxed{\ \ クケ\ \ },\ldots,a_{16}=\boxed{\ \ コサシ\ \ }\\
となる。\\
\\
(3)A_4=\left\{1,2,3,4\right\}の部分集合SでS \cup S''=A_4となるものはS=\left\{1,\boxed{\ \ ス\ \ }\right\}だけ\\
である。\\
\\
(4)A_nの部分集合SでS \cup S''=A_nとなるようなSの個数をb_nとすると、(3)から\\
分かうようにb_4=1であり\\
b_5=\boxed{\ \ セソ\ \ },b_6=\boxed{\ \ タチ\ \ },b_7=\boxed{\ \ ツテ\ \ },b_8=\boxed{\ \ トナ\ \ },\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }\\
となる。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} A_n=\left\{1,2,\ldots,n\right\}を、1からnまでの自然数の集合とする。SをA_nの部分集合\\
(空集合およびA_n自身も含む)としたとき、S'をSの要素それぞれに1を加えてできた\\
集合とする。またS''をS'の要素それぞれにさらに1を加えてできた集合とする。\\
たとえば、A_3=\left\{1,2,3\right\}の部分集合S=\left\{1,3\right\}の場合、S'=\left\{2,4\right\},S''=\left\{3,5\right\}\\
\\
(1)A_4=\left\{1,2,3,4\right\}の部分集合S=\left\{1,2,3\right\}はS \cup S'=A_4となる。このように\\
A_4の部分集合でS \cup S'=A_4となるものは\left\{1,2,3\right\}と\left\{1,\boxed{\ \ ア\ \ }\right\}の2つである。\\
\\
(2)A_nの部分集合SでS \cup S'=A_nとなるようなSの個数をa_nとすると、(1)から\\
分かるようにa_4=2であり\\
a_5=\boxed{\ \ イウ\ \ },a_6=\boxed{\ \ エオ\ \ },a_7=\boxed{\ \ カキ\ \ },a_8=\boxed{\ \ クケ\ \ },\ldots,a_{16}=\boxed{\ \ コサシ\ \ }\\
となる。\\
\\
(3)A_4=\left\{1,2,3,4\right\}の部分集合SでS \cup S''=A_4となるものはS=\left\{1,\boxed{\ \ ス\ \ }\right\}だけ\\
である。\\
\\
(4)A_nの部分集合SでS \cup S''=A_nとなるようなSの個数をb_nとすると、(3)から\\
分かうようにb_4=1であり\\
b_5=\boxed{\ \ セソ\ \ },b_6=\boxed{\ \ タチ\ \ },b_7=\boxed{\ \ ツテ\ \ },b_8=\boxed{\ \ トナ\ \ },\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }\\
となる。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
投稿日:2021.07.02

<関連動画>

産業医大 3次方程式と2次方程式の共通解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.

1996産業医大過去問
この動画を見る 

【基礎から解説】展開の公式を利用する因数分解(高校数学Ⅰ)

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を因数分解せよ。
(1)$x^3+27$
(2)$16x^3-2y^3$
(3)$x^3-9x^2+27x-27$
この動画を見る 

高校の教科書に出てくる因数分解を、2通りで

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2+3xy+2y^2+2x+3y+1$

石巻専修大学
この動画を見る 

平方根と式の値 京都橘 2024

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=2\sqrt 5 \\
a-b=-2\sqrt 3
\end{array}
\right.
\end{eqnarray}
$a^2+b^2=?$

2024京都橘大学
この動画を見る 

福田の1.5倍速演習〜合格する重要問題012〜京都大学2015年度文系数学第1問〜折れ線と交わらない条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次関数とグラフ#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
直線$y=px+q$が、$y=x^2-x$のグラフとは交わるが、$y=|x|+|x-1|+1$
のグラフとは交わらないような(p,q)の範囲を図示し、その面積を求めよ。

2015京都大学文系過去問
この動画を見る 
PAGE TOP