問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
チャプター:
0:00 オープニング
0:05 問題文
0:20 余りが同じ⇔差が倍数
1:43 割り切れる⇔余りも倍数
3:09 名言
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
投稿日:2021.06.04