【理数個別の過去問解説】1976年度東京工業大学 数学 第1問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】1976年度東京工業大学 数学 第1問解説

問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
チャプター:

0:00 オープニング
0:05 問題文
0:20 余りが同じ⇔差が倍数
1:43 割り切れる⇔余りも倍数
3:09 名言

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
投稿日:2021.06.04

<関連動画>

中学生向け整数問題その3

アイキャッチ画像
単元: #中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
この動画を見る 

【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。

京都大過去問
この動画を見る 

京大の整数問題!〇〇に注目!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
二つの奇数$a,b$に対して,$m=11a+b,n=3a+b$とおく。$m,n$がともに平方数であることはないことを証明せよ。

京都大過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2+3,n^2+7,n^2+13,n^2+19$のすべてが素数となる整数nをすべて求めよ.
この動画を見る 
PAGE TOP