【場合分け】文字係数の2次不等式を丁寧に解説! - 質問解決D.B.(データベース)

【場合分け】文字係数の2次不等式を丁寧に解説!

問題文全文(内容文):
$a$を定数とするとき、次の2次不等式を解け。
$x^2-(a+3)x+3a \lt 0$
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a$を定数とするとき、次の2次不等式を解け。
$x^2-(a+3)x+3a \lt 0$
投稿日:2023.07.18

<関連動画>

いきなり代入しませんよね?【数学 入試問題】【前橋国際大学】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x=\dfrac{-1+\sqrt5}{2}$のとき、$x^3+x^2+x+1$の値を求めよ。

前橋国際大過去問
この動画を見る 

ごめんなさい

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問2

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問2.次の問いに答えなさい。
(3) 正の数xに対して、xを超えない最大の整数をxの整数部分、xからxの整数部分を引いた値をxの小数部分といいます。
たとえば$\sqrt2(=1.414…)$については、$1\lt\sqrt2\lt2$より、$\sqrt2$の整数部分は1、$\sqrt2$の小数部分は$\sqrt2-1$となります。
$\sqrt5$の小数部分をaとするとき、$a^2+4a$の値を求めなさい。
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2023 \\
x^3+y^3=1930
\end{array}
\right.
\end{eqnarray}$

$x+y=?$
この動画を見る 

福田のわかった数学〜高校1年生037〜部屋割り論法(2)の訂正版

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 部屋割り論法(2)
座標平面上に異なる5個の格子点がある。これら5個の格子点の中に、
結んだ線分の中点がまた格子点となるような2点が存在することを示せ。
この動画を見る 
PAGE TOP