【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2) - 質問解決D.B.(データベース)

【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2)

問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
チャプター:

0:00 オープニング
0:05 問題文
0:13 数学的帰納法の流れ
0:32 問題解説
4:50 名言

単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
投稿日:2021.01.12

<関連動画>

x^πを微分せよ

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$y=x^{\pi}$を微分せよ.
この動画を見る 

12京都府教員採用試験(数学:2番 接線系)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$

(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第3問〜指数不等式の領域が表す面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)連立不等式$x \geqq 2, 2^x \leqq x^y \leqq x^2$の表す領域をxy平面上に図示せよ。
ただし、自然対数の底eが$2 \lt e \lt 3$を満たすことを用いてよい。
(2)$a \gt 0$に対して、連立不等式$2 \leqq x \leqq 6, (x^y-2^x)(x^a-x^y) \geqq 0$
の表すxy平面上の領域の面積をS(a)とする。
$S(a)$を最小にするaの値を求めよ。

2022北海道大学理系過去問
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 
PAGE TOP