【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2) - 質問解決D.B.(データベース)

【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2)

問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
チャプター:

0:00 オープニング
0:05 問題文
0:13 数学的帰納法の流れ
0:32 問題解説
4:50 名言

単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
投稿日:2021.01.12

<関連動画>

福田の数学〜絞り込めればなんとかなる!〜明治大学2023年全学部統一ⅠⅡAB第1問(4)〜不等式を満たす自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数$m,n$があり、$1\lt m\lt n$とする。

$\displaystyle (m+\frac{1}{n})(n+\frac{1}{m})\leqq 12$

を満たす$(m,n)$を求めよ。

2023明治大学過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第1問(3)〜関数の増減と平均値の定理

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)閉区間[0,1]上で定義された連続関数$h(x)$が、開区間(0,1)で微分可能であり、この区間で常に$h'(x)$<0であるとする。このとき、$h(x)$が区間[0,1]で減少することを、平均値の定理を用いて証明しなさい。
この動画を見る 

【短時間でマスター!!】円の接線の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
数学2B
円の接線の求め方を解説します。

点A$(3.1)$から円$x^2+y^2=2$に引いた接線の方程式と接点の座標を求めよ。
この動画を見る 

すいの体積はなぜ1/3か

アイキャッチ画像
単元: #微分とその応用#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
すいの体積はなぜ三分の一なのか解説していきます.
この動画を見る 

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。

山形大過去問
この動画を見る 
PAGE TOP