数学「大学入試良問集」【17−4 漸化式と等比数列・極限】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【17−4 漸化式と等比数列・極限】を宇宙一わかりやすく

問題文全文(内容文):
次のように定義された数列を$\{a_n\}$とする。
$a_1=r^2,a_2=1,2a_n=(r+3)a_{n-1}-(r+1)a_{n-2}(n \geqq 3)$
このとき、次の各問いに答えよ。
(1)$b_n=a_{n+1}-a_n$とおくとき、$b_n$を$n$と$r$を用いて表せ。
(2)$a_n$を求めよ。
(3)数列$\{a_n\}$が収束するような$r$の範囲およびそのときの極限値を求めよ。
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京農工大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次のように定義された数列を$\{a_n\}$とする。
$a_1=r^2,a_2=1,2a_n=(r+3)a_{n-1}-(r+1)a_{n-2}(n \geqq 3)$
このとき、次の各問いに答えよ。
(1)$b_n=a_{n+1}-a_n$とおくとき、$b_n$を$n$と$r$を用いて表せ。
(2)$a_n$を求めよ。
(3)数列$\{a_n\}$が収束するような$r$の範囲およびそのときの極限値を求めよ。
投稿日:2021.06.21

<関連動画>

2023年京大の漸化式!典型的なパターンが詰まった問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
{${ a_n}$}は次の条件を満たしている。

${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$

ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。

京都大過去問
この動画を見る 

【数B】【数列】0<a<bとする。数列a,u,v,w,bが等差であり、数列a,x,y,z,bが等比(公比は実数)である。(1) uwとxzの大小を比較せよ。(2) u+wと、x+zの大小を比較せよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
0<a<bとする。数列a,u,v,w,bが等差数列であり、数列a,x,y,z,bが等比数列(公比は実数)である。
(1) uwとxzの大小を比較せよ。
(2) u+wと、x+zの大小を比較せよ。
この動画を見る 

【数B】数列:数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。95東工大,07筑波大,青山学院などで出題された問題です!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。
この動画を見る 

1+2=❓  AKB□❗️❗️

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1+2=
(a) 1!
(b) 2!
(c) 3!
(d) 3!!
この動画を見る 

大学入試問題#638「よくある形」 名古屋市立大学(2021) #数列 #級数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$が
$a_1=2,\ \displaystyle \frac{a_{n+1}}{a_n}=\displaystyle \frac{n}{n+2}$を満たすとき
$\displaystyle \sum_{k=1}^\infty a_k$を求めよ

出典:2021年名古屋市立大学 入試問題
この動画を見る 
PAGE TOP