式の値 2024立教新座の最初の一問 - 質問解決D.B.(データベース)

式の値 2024立教新座の最初の一問

問題文全文(内容文):
$2024^2 - 4047×2025+2031×2019$
2024立教新座高等学校
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2024^2 - 4047×2025+2031×2019$
2024立教新座高等学校
投稿日:2024.02.03

<関連動画>

【高校数学】数Ⅰ-8 因数分解①(基本編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう。
①$3ax^2-12a^2x$
②$x(x-5)+3(x-5)$
③$9x^2+12xy+4y^2$
④$50x^2-2y^2$
⑤$6a^3-54ab^2$
⑥$2x^2+14x+24$
⑦$x^2-(y-z)^2$
⑧$(x-y)^2+2(x-y)-24$
この動画を見る 

九州大 三次方程式と無理数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$

(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ

(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ

(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ

出典:2000年九州大学 過去問
この動画を見る 

根号を含んだ不等式の証明

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a>0,b>0$のとき
$3 \sqrt a + 2 \sqrt b > \sqrt {9a+4b}$
を示せ
この動画を見る 

ケンブリッジ大学の入試問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{3-2\sqrt 2} =$
a. $\sqrt 3 -1$
b. $\sqrt 2 -1$
c. $\sqrt 3 -\sqrt 2$

University of Cambridge
この動画を見る 

福田のわかった数学〜高校1年生061〜三角形の形状決定問題(2)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形の形状決定(2)
次の等式が成り立つとき、$\triangle ABC$はどんな形の三角形か。
$\sin A\cos A=\sin B\cos B$
この動画を見る 
PAGE TOP