【数A】【場合の数と確率】確率の基本3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【場合の数と確率】確率の基本3 ※問題文は概要欄

問題文全文(内容文):
$1$個のさいころを$3$回投げるとき, 次の確率を求めよ。
(1) 何回目かにその回の番号と同じ目が出る確率
(2) どの回にもその回の番号と同じ目が出ないで,しかも$1$の目が1回も出ない確率

ある試行における2つの事象 $A, B$について,$P(A)=0.5,P(B)=11$,
$P(A\cup B) = 0.6$ であるとき, 次の問いに答えよ。
(1)$ P(A \cap B),P(A \cap \overline{ B }), P(\overline{ A }∩B)$ を求めよ。
(2)$ A,B$のどちらか一方だけが起こる事象を,$ A, B, U, 0, \overline{ }$ を用いて表せ。また,その事象が起こる確率を求めよ。
チャプター:

0:00 1(1) 何回目かにその回の番号と同じ目が出る確率
2:32 1(2) どの回にもその回と同じ目が出ないで、しかも1の目が1回も出ない確率
3:47 P(A⋂B), P(A⋂B¯), P(A¯⋂B) を求めよ
7:14 A,B のどちらか一方だけが起こる事象を,A,B,⋂,⋃,¯を用いて表せ。またその事象が起こる確率を求めよ。

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$1$個のさいころを$3$回投げるとき, 次の確率を求めよ。
(1) 何回目かにその回の番号と同じ目が出る確率
(2) どの回にもその回の番号と同じ目が出ないで,しかも$1$の目が1回も出ない確率

ある試行における2つの事象 $A, B$について,$P(A)=0.5,P(B)=11$,
$P(A\cup B) = 0.6$ であるとき, 次の問いに答えよ。
(1)$ P(A \cap B),P(A \cap \overline{ B }), P(\overline{ A }∩B)$ を求めよ。
(2)$ A,B$のどちらか一方だけが起こる事象を,$ A, B, U, 0, \overline{ }$ を用いて表せ。また,その事象が起こる確率を求めよ。
投稿日:2025.01.17

<関連動画>

【数A】【場合の数と確率】確率の乗法定理 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
箱Aには赤玉3個と白玉2個、箱Bには赤玉と白玉2個ずつ入っている。
(1)箱Aから玉を1個取り出し、それを箱Bに入れた後、箱Bから玉を1個取り出すとき、それが赤玉である確率を求めよ。
(2)箱Aから玉を2個取り出し、それを箱Bに入れた後、箱Bから玉を2個同時に取り出すとき、それらが2個とも赤玉である確率を求めよ。
この動画を見る 

龍谷大 確率 三次関数

アイキャッチ画像
単元: #数A#場合の数と確率#確率#統計的な推測#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白19個、赤1個から$n$個取り出す。
白が$n$個のとき$n^2$点
赤が含まれていたら0点
特典の期待値が最大となる$n$を求めよ

出典:2006年龍谷大学 過去問
この動画を見る 

2個のサイコロだけど難問!! 日大三 (西東京)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つのさいころA,Bを同時に投げ、Aの目の数をa、Bの目の数をbとする。
$2a^2-3ab+b^2$が正の奇数となる確率を求めよ。
日本大学第三高等学校
この動画を見る 

福田のおもしろ数学479〜ちょうど9回でゲームが終了する確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

コインを投げて表が出れば$1$点獲得し、裏が出たら

$2$点を失う。

コインを繰り返し投げて、持ち点が$1$点以下になれば

終了するゲームをする。

最初$10$点をもち、ゲームを始めて$9$回目にゲームが

終了する確率を求めて下さい。
    
この動画を見る 

【数A】高2生必見!! 2019年8月 第2回 K塾高2模試 大問4_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
この動画を見る 
PAGE TOP