福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
投稿日:2023.05.31

<関連動画>

暗算?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-\sqrt3x+1=0$のとき,
$x^{30}+\dfrac{1}{x^{30}}$の値を求めよ.
この動画を見る 

福田の数学〜京都大学2025理系第1問(1)〜複素数の絶対値の取り得る値の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$i$は虚数単位とする。

複素数$z$が、

絶対値が$2$である複素数全体を動くとき、

$\left \vert z-\dfrac{i}{z}\right \vert$

の最大値と最小値を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

複素数の3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+i=0$を解け.
この動画を見る 

2021久留米大(医)三次方程式と複素平面

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.

2021久留米(医)
この動画を見る 

【高校数学】数Ⅲ-4 複素数の絶対値・2点間の距離②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\alpha=3+(2x-1)i,\beta=x+2-i$とする.
2点$A(\alpha),B(\beta)$と原点$O$が一直線上に
あるとき,実数$x$の値を求めよ.

②$z$を複素数とするとき,$\vert z \vert = \vert \overline{z} \vert = \vert -z \vert$を証明せよ.
この動画を見る 
PAGE TOP