大学入試問題#813「見通しは立てやすい」 #京都大学(1972) #極限 - 質問解決D.B.(データベース)

大学入試問題#813「見通しは立てやすい」 #京都大学(1972) #極限

問題文全文(内容文):
次の式で定められる関数$F(x)$に対して、
$\displaystyle \lim_{ x \to \infty } [F(x) -log\ x]$を求めよ。
ただし、$x \gt 0$とする。
$F(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{(t+1)(t+3)}dt$

出典:1972年京都大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の式で定められる関数$F(x)$に対して、
$\displaystyle \lim_{ x \to \infty } [F(x) -log\ x]$を求めよ。
ただし、$x \gt 0$とする。
$F(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{(t+1)(t+3)}dt$

出典:1972年京都大学 入試問題
投稿日:2024.05.08

<関連動画>

福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
この動画を見る 

滋賀大 整式の累乗の微分 公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'84滋賀大学過去問題
$\frac{d}{dx} \{ f(x) \}^n=n \{ f(x) \}^{n-1}f'(x)$を証明せよ。
(f(x)は0でないxの整式、n自然数)
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第3問〜四面体の内部に出来る八面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点O, A, B, Cを頂点とする四面体OABCを考える。辺OA, OB, OCの中点をそれぞれP, Q, Rとし、辺BC, CA, ABの中点をそれぞれS, T, Uとする。
(1)辺PS, QT, RUが1点で交わることを示せ。
(2)$OA^2$+$BC^2$=$OB^2$+$CA^2$=$OC^2$+$AB^2$ のとき、点P, Q, R, S, T, Uが同一球面上にあることを示せ。
(3)(2)において、辺PSが辺OA, BCと直交するとし、辺OA, BCの長さをそれぞれ$a$, $k$とする。点P, Q, R, S, T, Uを頂点とする八面体の体積$V$を$a$と$k$を用いて表せ。
(4)(3)において、$k$=1のとき八面体の体積$V$の最大値を求めよ。
この動画を見る 

中学生にはきついよ 因数分解 東京農大一

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京農工大学
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$4a^4b^4-29a^2b^2+25$
この動画を見る 

福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
この動画を見る 
PAGE TOP