大学入試問題#813「見通しは立てやすい」 #京都大学(1972) #極限 - 質問解決D.B.(データベース)

大学入試問題#813「見通しは立てやすい」 #京都大学(1972) #極限

問題文全文(内容文):
次の式で定められる関数$F(x)$に対して、
$\displaystyle \lim_{ x \to \infty } [F(x) -log\ x]$を求めよ。
ただし、$x \gt 0$とする。
$F(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{(t+1)(t+3)}dt$

出典:1972年京都大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の式で定められる関数$F(x)$に対して、
$\displaystyle \lim_{ x \to \infty } [F(x) -log\ x]$を求めよ。
ただし、$x \gt 0$とする。
$F(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{(t+1)(t+3)}dt$

出典:1972年京都大学 入試問題
投稿日:2024.05.08

<関連動画>

複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。

$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。

京都大過去問
この動画を見る 

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
この動画を見る 

慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題

[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。

[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}

・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る 

最後まで〇〇するなよ因数分解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$(ac+bd)^2 - (ad + bc)^2$

関西医科大学
この動画を見る 

大学入試問題#549「解き方は色々」 島根大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{2x-2}{2x^2-2x+1}dx$

出典:2023年島根大学 入試問題
この動画を見る 
PAGE TOP