数検準1級2次過去問【2020年12月】5番:整数問題 - 質問解決D.B.(データベース)

数検準1級2次過去問【2020年12月】5番:整数問題

問題文全文(内容文):
$boxed{5}$ $m,n\in IN$とする.

(1)$100!=2^m \times (奇数)$と表したときの$m$の値を求めよ.
(2)$50!=n^2\times (互いに異なる素数の積)$と表したときの
素因数分解した形で表せ.
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$boxed{5}$ $m,n\in IN$とする.

(1)$100!=2^m \times (奇数)$と表したときの$m$の値を求めよ.
(2)$50!=n^2\times (互いに異なる素数の積)$と表したときの
素因数分解した形で表せ.
投稿日:2020.12.20

<関連動画>

自然数の和  日大習志野

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1からnまでの自然数の和=210
n=?(n:自然数)

日本大学習志野高等学校
この動画を見る 

漸化式と整数の融合問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.

この動画を見る 

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る 

京大院生 古賀真輝 フェルマーの小定理を証明する

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
フェルマーの小定理を証明していきます.
この動画を見る 

数学オリンピック 予選簡単問題 6000の約数、平方数でないものの個数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
超簡単問題
6000の正の約数で平方数でないものは何個か。
この動画を見る 
PAGE TOP