どっちがでかい?昨日の反省 - 質問解決D.B.(データベース)

どっちがでかい?昨日の反省

問題文全文(内容文):
どっちがでかい

$2^{370}$ VS $13^{101}$
単元: #整数の性質
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい

$2^{370}$ VS $13^{101}$
投稿日:2023.11.01

<関連動画>

福田のおもしろ数学536〜不定方程式の整数解

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{13}{x^2}+\dfrac{508}{y^2}=\dfrac{z}{509}$

を満たす正の整数の組

$(x,y,z)$をすべて求めよ。
    
この動画を見る 

整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$32n^2$で割り切れることを示せ.
この動画を見る 

福田の数学〜京都大学2025理系第2問〜不定方程式で表された数の最小値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

正の整数$x,y,z$を用いて

$N=9z^2=x^6+y^4$

と表される正の整数$N$の最小値を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

方程式 整数解OnlineMathContest

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2(m-480)x+4m+97=0$が正整数解のみをもつ整数$m$を求めよ.
この動画を見る 

東大 不定方程式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数とする.

①$x+y+z=xyz$を満たす$(x,y,z)$をすべて求めよ.$(x\leqq y\leqq z)$
②$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ.

2006東大過去問
この動画を見る 
PAGE TOP