福田のおもしろ数学489〜3本の光線のなす角と三角関数 - 質問解決D.B.(データベース)

福田のおもしろ数学489〜3本の光線のなす角と三角関数

問題文全文(内容文):

$3$本の光線が原点$O$から空間へ発射された。

$2$本ずつのなす角が

$\alpha,\beta,\gamma(0° \lt \alpha \leqq \beta \leqq \gamma \leqq 180°)$

であり、この$3$本の光線は同一平面上にない。

$\sin\dfrac{\alpha}{2}+\sin\dfrac{\beta}{2} \gt \sin\dfrac{\gamma}{2}$

を証明せよ。
    
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$3$本の光線が原点$O$から空間へ発射された。

$2$本ずつのなす角が

$\alpha,\beta,\gamma(0° \lt \alpha \leqq \beta \leqq \gamma \leqq 180°)$

であり、この$3$本の光線は同一平面上にない。

$\sin\dfrac{\alpha}{2}+\sin\dfrac{\beta}{2} \gt \sin\dfrac{\gamma}{2}$

を証明せよ。
    
投稿日:2025.05.05

<関連動画>

【高校数学】 数Ⅱ-132 対数とその性質②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。

①$\log_216$

②$\log_ \frac{1}{3} 9$

③$\log_\sqrt{ 3 } 1$

◎次の計算をしよう。

④$\log_69+\log_64$

⑤$\log_3 2- \log_3 18$

⑥$\log_2\sqrt{ 2 }+\displaystyle \frac{1}{2}\log_23-\log_2\displaystyle \frac{\sqrt{ 3 }}{2}$
この動画を見る 

東京水産大 三次関数の共通接線

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3$と$y=(x+1)^3+k$の両方に接する直線が5本引けるような$k$の範囲を求めよ

出典:1994年東京海洋大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-144 微分係数と導関数①

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の与えられた範囲における平均へ過率を求めよう。

①$y=x^2(1 \leqq x \leqq 3)$

②$y=2x^2-1(a \leqq x \leqq b)$

◎次の極限を求めよう。
③3$\displaystyle \lim_{ x \to 3 }(x^2-1)$

④$\displaystyle \lim_{ h \to 0 }(3+2h)$

⑤$\displaystyle \lim_{ x \to 2 }(\displaystyle \frac{x+1}{x-1})$

⑥$\displaystyle \lim_{ h \to 0 }(\displaystyle \frac{h^2+3h}{h})$

⑦$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{(x-2)(x^2+x-1)}{(x-2)(x+1)}$
この動画を見る 

【高校数学】 数Ⅱ-162 関数のグラフと方程式・不等式①

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式の異なる実数解の個数を求めよう。

①$x^3-3x^2-9x+7=0$

②$-2x^3+6x^2-8=0$
この動画を見る 

お茶の水女子大 整式の剰余 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)$を$x^2+x+1$で割ると$x+2$余り、$x^2+1$で割ると$1$余る
$f(x)$を$(x^2+x+1)(x^2+1)$で割った余りを求めよ

出典:2006年お茶の水女子大学 過去問
この動画を見る 
PAGE TOP