福田のおもしろ数学489〜3本の光線のなす角と三角関数 - 質問解決D.B.(データベース)

福田のおもしろ数学489〜3本の光線のなす角と三角関数

問題文全文(内容文):

$3$本の光線が原点$O$から空間へ発射された。

$2$本ずつのなす角が

$\alpha,\beta,\gamma(0° \lt \alpha \leqq \beta \leqq \gamma \leqq 180°)$

であり、この$3$本の光線は同一平面上にない。

$\sin\dfrac{\alpha}{2}+\sin\dfrac{\beta}{2} \gt \sin\dfrac{\gamma}{2}$

を証明せよ。
    
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$3$本の光線が原点$O$から空間へ発射された。

$2$本ずつのなす角が

$\alpha,\beta,\gamma(0° \lt \alpha \leqq \beta \leqq \gamma \leqq 180°)$

であり、この$3$本の光線は同一平面上にない。

$\sin\dfrac{\alpha}{2}+\sin\dfrac{\beta}{2} \gt \sin\dfrac{\gamma}{2}$

を証明せよ。
    
投稿日:2025.05.05

<関連動画>

山梨大 複素数の4乗根

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$複素数
$z^4=-8-8\sqrt{ 3 }i$

出典:山梨大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-59 直線の方程式④・点と直線の距離編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の点と直線の距離を求めよう。

①$(-2.3), 3x-y+1=0 $

②$(-1.8), y=2x-5$

③3点$A(-3.-5)、B(5.-1)、C(-2、4)$を頂点とする△ABCの面積を求めよう。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)次の2つの等式を満たす関数f(x)を求めよ。
$f(0)=-\frac{1}{3}, f'(x)=2x+\int_0^1f(t)dt$

2021中央大学経済学部過去問
この動画を見る 

#電気通信大学2015#区分求積法#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^2}\displaystyle \sum_{k=1}^n k \sin\displaystyle \frac{k\pi}{2n}$

出典:2015年電気通信大学
この動画を見る 

近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。

早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る 
PAGE TOP