【数学】中2-62 証明チャレンジ Lv.2 - 質問解決D.B.(データベース)

【数学】中2-62 証明チャレンジ Lv.2

問題文全文(内容文):
数学 中2 証明チャレンジ Lv.2
以下の問に答えよ
<図ABCDE>
右の図で、AB = ED、AB ∥ ED ならば、
△ ABC と△ EDC が合同であることを証明しよう!
[宣言] [1]________で
[理由] [2]_____より [3]_______・・・①
 [4]_____より [5]_______・・・②、[6]______・・・③
[結論]・[合同条件] ①、②、③より、[7]_______から [8]________
※図は動画内参照


単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数学 中2 証明チャレンジ Lv.2
以下の問に答えよ
<図ABCDE>
右の図で、AB = ED、AB ∥ ED ならば、
△ ABC と△ EDC が合同であることを証明しよう!
[宣言] [1]________で
[理由] [2]_____より [3]_______・・・①
 [4]_____より [5]_______・・・②、[6]______・・・③
[結論]・[合同条件] ①、②、③より、[7]_______から [8]________
※図は動画内参照


投稿日:2012.11.17

<関連動画>

数字が一切出てこない!!面積比

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{△AEF}{△ADF}+\frac{△BEG}{△BCG}$=
*図は動画内参照

この動画を見る 

【数学】中2-2 式の加法・減法①

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
文字の部分が同じ項を①____といって
計算することができるんだ!
◎計算しよう!!
②$5x+3y-2x+y=$
③$-2x^2+7x+5x-2=$
④$-3a^2b+2ab^2-6ab^2-5a^2b=$
⑤$\displaystyle \frac{1}{3}x^2-2x+\displaystyle \frac{1}{2}x-x^2=$
⑥$(7x=5y)+(4x+y)$
⑦$(-x+12y)-(-5y+x-4)$
⑧$6x-7y$
 $-x+y$
______
⑨$-x^2+6x$
 $5x^26x-9$
______

⑩と⑦の式をひっ算でやってみよう!!
この動画を見る 

【やり方を短時間でマスター!!】連立方程式(代入法・加減法)〔現役講師解説、中学、数学〕

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 3rd School
問題文全文(内容文):
中学2年生 数学
連立方程式

加減法
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 15 \\
9x - 5y = 12
\end{array}
\right.
\end{eqnarray}$

代入法
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 2 \\
y = x + 2
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

3通りで解説  天理

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
CH=?
*図は動画内参照

天理高校
この動画を見る 

【数学】中2-16 連立方程式③ 加減法の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP