問題文全文(内容文):
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。
(2)
$x=y=1$のとき$$
(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。
出典:2021年北里大学医学部 入試問題
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。
(2)
$x=y=1$のとき$$
(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。
出典:2021年北里大学医学部 入試問題
単元:
#数A#整数の性質#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。
(2)
$x=y=1$のとき$$
(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。
出典:2021年北里大学医学部 入試問題
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。
(2)
$x=y=1$のとき$$
(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。
出典:2021年北里大学医学部 入試問題
投稿日:2021.09.18