【整数問題】難関大が好きなパターン!範囲を絞り込め! - 質問解決D.B.(データベース)

【整数問題】難関大が好きなパターン!範囲を絞り込め!

問題文全文(内容文):
$abcd=a+b+c+d$を満たす正の整数$a,b,c,d$をすべて求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$abcd=a+b+c+d$を満たす正の整数$a,b,c,d$をすべて求めよ。
投稿日:2022.11.04

<関連動画>

【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問

p,qを素数とする。このときp^q+q^pが素数となるようなp,qの値の組を全て求めよ。
この動画を見る 

【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは1 (1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る 

福田の数学〜神戸大学2022年理系第5問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ a,bを実数、pを素数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{90pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{p}とする。m,nの値をpを用いて表せ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^pとする。bの値をa,pを用いて表せ。
\end{eqnarray}
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題4。整数解の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第4問 (1)5^4=625を2^4で割った時の余りは1に等しい。このことを用いると、不定方程式\\
\\
5^4x-2^4y=1 \ldots①\\
\\
の整数解のうち、xが正の整数で最小になるのはx=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }\\であることがわかる。\\
また、①の整数解のうち、xが2桁の正の整数で最小になるのは\\
x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ } である。\\
\\
(2)次に、625^2を5^5で割った時の余りと、2^5で割った時の余りについて考えてみよう。\\
まず、\\
625^2=5^{\boxed{ケ}}\\
であり、またm=\boxed{\ \ イウ\ \ }とすると、625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1 である。\\
これらにより、625^2を5^5で割った時の余りと、2^5で割った時の余りがわかる。\\
\\
(3)(2)の考察は、不定方程式\\
\\
5^5x-2^5y=1 \ldots②\\
\\
の整数解を調べるために利用できる。x,yを②の整数解とする。\\
5^5xは5^5の倍数であり、2^5で割った時の余りは1となる。よって(2)により、\\
5^5x-625^2は5^5でも2^5でも割り切れる。5^5と2^5は互いに素なので\\
5^5x-625^2は5^5・2^5の倍数である。このことから、②の整数解のうち、\\
xが3桁の正の整数で最小になるのは\\
x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }\\
であることが分かる。\\
\\
(4)11^4を2^4で割った時の余りは1に等しい。不定方程式\\
11^5x-2^5y=1\\
の整数解のうち、xが正の整数で最小になるのは\\
x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ } である。
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)nを奇数とする。nと[\frac{3n+2}{2}]の積が6の倍数であるための必要十分条件は、\\
nを\boxed{\ \ エ\ \ }で割った時の余りが\boxed{\ \ オ\ \ }となるときである。ただし、\\
実数xに対しxを超えない最大の整数を[x]と表す。また、\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }は0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }\\
を満たす整数である。\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }を求める過程を解答欄に記述しなさい。
\end{eqnarray}
この動画を見る 
PAGE TOP