一橋大(類)整数 - 質問解決D.B.(データベース)

一橋大(類)整数

問題文全文(内容文):
$n^n+1$が7の倍数となる自然数$n$をすべて求めよ.
ただし,$n\leqq 50$である.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^n+1$が7の倍数となる自然数$n$をすべて求めよ.
ただし,$n\leqq 50$である.
投稿日:2021.09.12

<関連動画>

【糸口を探せ!】整数:同志社国際高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sqrt{24n}$と$\sqrt{n+27}$がともに整数になるような最小の自然数$n$の値を求めよ.

同志社国際高校過去問
この動画を見る 

階乗の虫食い算

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 15!=13076abc68000,これを解け.$
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^8-6n^4+10$が素数となる整数$n$をすべて求めよ.
この動画を見る 

整数の基本問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ m,nを自然数とし(m \gt n),pを素数とする.\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{p}のとき,mは偶数であることを示せ.$
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$2^{3^n}+1$は$3^{n+1}$で割り切れ,$3^{n+2}$では割り切れないことを示せ.
この動画を見る 
PAGE TOP