問題文全文(内容文):
①$\sin^2 \displaystyle \frac{\alpha}{2}=$
②$\cos ^2 \displaystyle \frac{\alpha}{2}=$
③$\tan ^2 \displaystyle \frac{\alpha}{2}=$
◎$\displaystyle \frac{3}{2}π \lt \alpha \lt 2π$で、$\sin \alpha=-\displaystyle \frac{3}{5}$のとき、次の値を求めよう。
④$\sin \displaystyle \frac{\alpha}{2}=$
⑤$\cos \displaystyle \frac{\alpha}{2}=$
⑥$\tan \displaystyle \frac{\alpha}{2}=$
①$\sin^2 \displaystyle \frac{\alpha}{2}=$
②$\cos ^2 \displaystyle \frac{\alpha}{2}=$
③$\tan ^2 \displaystyle \frac{\alpha}{2}=$
◎$\displaystyle \frac{3}{2}π \lt \alpha \lt 2π$で、$\sin \alpha=-\displaystyle \frac{3}{5}$のとき、次の値を求めよう。
④$\sin \displaystyle \frac{\alpha}{2}=$
⑤$\cos \displaystyle \frac{\alpha}{2}=$
⑥$\tan \displaystyle \frac{\alpha}{2}=$
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\sin^2 \displaystyle \frac{\alpha}{2}=$
②$\cos ^2 \displaystyle \frac{\alpha}{2}=$
③$\tan ^2 \displaystyle \frac{\alpha}{2}=$
◎$\displaystyle \frac{3}{2}π \lt \alpha \lt 2π$で、$\sin \alpha=-\displaystyle \frac{3}{5}$のとき、次の値を求めよう。
④$\sin \displaystyle \frac{\alpha}{2}=$
⑤$\cos \displaystyle \frac{\alpha}{2}=$
⑥$\tan \displaystyle \frac{\alpha}{2}=$
①$\sin^2 \displaystyle \frac{\alpha}{2}=$
②$\cos ^2 \displaystyle \frac{\alpha}{2}=$
③$\tan ^2 \displaystyle \frac{\alpha}{2}=$
◎$\displaystyle \frac{3}{2}π \lt \alpha \lt 2π$で、$\sin \alpha=-\displaystyle \frac{3}{5}$のとき、次の値を求めよう。
④$\sin \displaystyle \frac{\alpha}{2}=$
⑤$\cos \displaystyle \frac{\alpha}{2}=$
⑥$\tan \displaystyle \frac{\alpha}{2}=$
投稿日:2015.08.29