【数C】【空間ベクトル】平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。 - 質問解決D.B.(データベース)

【数C】【空間ベクトル】平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。

問題文全文(内容文):
平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。
チャプター:

0:00 オープニング、問題概要
0:14 考え方
1:06 例えば1点を考えてみる
1:51 一般化
2:58 解答

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。
投稿日:2025.10.16

<関連動画>

【高校数学】 数B-36 2点間の距離①

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点A(x.y.z.)、B($x_2,y_2,z_2$)間の距離は
AB=①_________________

◎次の2点間の距離を求めよう。

②A(2.-1.3)、B(4.3.-1) ③O(0.0.0)、A(4.-2.2)

④3点A(3.1.5)、B(2.4.3)、C(1.2.3)を頂点とする△ABCはどのような三角形?
この動画を見る 

【数B】ベクトル:ベクトルの基本⑳空間における平面上の点を係数から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題088〜一橋大学2018年度文系第4問〜四面体の体積の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。

2018一橋大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$tを実数とする。また、Oを原点とする座標空間内に
3点$A(4,2,5),\ B(-1,1,1),\ C(2-t,4-3t,6+2t)$をとる。
(1)$\triangle OAB$の面積を求めよ。
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を
すべて求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜明治大学2024理工学部第1問(2)〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$k$ を正の実数とし、座標空間内の $4$ 点 $\mathrm{O}(0,0,0),$ $\mathrm{A}(k,2,1),$ $\mathrm{B}(-k,1,2),$ $\mathrm{C}(1,1,1)$ を考える。 $2$ つのベクトル $\overrightarrow{\mathrm{OA}}$ と $\overrightarrow{\mathrm{OB}}$ は垂直であるとする。また、 $3$ 点 $\mathrm{O},\mathrm{A},\mathrm{B}$ を通る平面を $\alpha$ とし、点 $\mathrm{C}$ から$\alpha$ へ下ろした垂線と平面 $\alpha$ の交点を $\mathrm{H}$ とする。このとき、 $k=\fbox{キ}$ であり、 $\triangle \mathrm{OAB}$ の面積は $\displaystyle \frac{\fbox{ク}}{\fbox{ケ}}$ である。また、$\overrightarrow{\mathrm{OH}}=$$\displaystyle \frac{\fbox{コ}}{\fbox{サ}} \overrightarrow{\mathrm{OA}}$$\displaystyle + \frac{\fbox{シ}}{\fbox{ス}} \overrightarrow{\mathrm{OB}}$ であり、四面体 $\mathrm{OABC}$ の体積は $\displaystyle \frac{\fbox{セ}}{\fbox{ソ}}$ である。
この動画を見る 
PAGE TOP