日本獣医生命科学大 例のあれ - 質問解決D.B.(データベース)

日本獣医生命科学大 例のあれ

問題文全文(内容文):
2022日本獣医生命科学大学過去問題
n自然数
$S_n = \frac{3}{a_1}+\frac{5}{a_2}+\frac{7}{a_3}+\cdots+\frac{2n+1}{a_n}$
$a_n = 1^2+2^2+3^2+\cdots+n^2$
$S_n$を求めよ
単元: #数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022日本獣医生命科学大学過去問題
n自然数
$S_n = \frac{3}{a_1}+\frac{5}{a_2}+\frac{7}{a_3}+\cdots+\frac{2n+1}{a_n}$
$a_n = 1^2+2^2+3^2+\cdots+n^2$
$S_n$を求めよ
投稿日:2023.09.05

<関連動画>

【For you 動画-15】  数B-漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
一般項${an}$を出す公式
【等差】$a_{n}=$①____
【等比】$a_{n}=$②____
【階差】$(a_{n+1} -a_{n}=b_{n})$
③____のとき
$a_{n}=$④____________

◎グループ分けをしよう!

$\boxed{ A } a_{n+1} =2a_{n}$
$\boxed{ B } a_{n+1}-a_{n} =3^{n}$
$\boxed{ C } a_{n+1}+5a_{n} =0$
$\boxed{ D } a_{n+1}=a_{n}+7$
$\boxed{ E } a_{n+1}-3a_{n}=4$
$\boxed{ F } a_{n+1}-a_{n}=-2n+1$

等差数列は⑤____,等比数列は⑥____
階差数列は⑦____, 変形が必要なのは⑧____
⑧を変形すると⑨________ になる。
この動画を見る 

近畿大 展開 係数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+3)(x+5)$
$x(x+7)(x+9)(x+11)$

(1)
$x^7$の係数

(2)
$x^6$の係数

出典:2012年近畿大学 過去問
この動画を見る 

確率漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
この動画を見る 

高校入試だけど確率漸化式!?西大和学園2022入試問題解説100問解説!!58問目

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#数列#漸化式#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
正四面体の頂点を、点Pが1秒ごとに今ある頂点以外の頂点に等しい確率で移動する
点Pが最初に点Aにあるとき4秒後に点Aにある確率は?
*図は動画内参照

2022西大和学園高等学校
この動画を見る 

早稲田大学 数列、複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$

(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ

(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値

(3)
$a_{n}$は5の倍数でないことを示せ

(4)
$Z^n$は実数でないことを示せ

出典:2013年早稲田大学 過去問
この動画を見る 
PAGE TOP