【中学数学】連立方程式の演習問題~福井県の2012の入試問題~【高校受験】 - 質問解決D.B.(データベース)

【中学数学】連立方程式の演習問題~福井県の2012の入試問題~【高校受験】

問題文全文(内容文):
本屋と図書館の道の途中に駅がある。
Aさんは、本屋から駅まで自転車で行き、駅から図書館まで歩いていく。
Bさんは、同じ道を図書館から駅まで自転車で行き、駅から本屋まで歩いていく。
Aさんが本屋を、Bさんが図書館を同時に出発したところ、10分後に出会った。
そのとき、Aさんは歩いており、Bさんは自転車に乗っていた。
また、Bさんが本屋に到着した8分後に、Aさんは図書館に到着した。
ただし、2人の自転車の速さは時速12km、歩く速さは時速4kmとする。
このとき、次の問いに答えよ。

(1)図書館から2人が出会ったところまでの道のりを求めよ。
(2)本屋から駅までの道のりを$x$km、駅から2人が出会ったところまでの道のりを
 $y$kmとして、$x$と$y$についての連立方程式をつくれ。
(3)(2)の連立方程式を解いて、本屋から図書館までの道のりを求めよ。
チャプター:

00:00 はじまり

00:20 問題

02:14 問題解説(1)

05:30 問題解説(2)

12:13 問題解説(3)

15:07 まとめ

15:37 問題と答え

単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
本屋と図書館の道の途中に駅がある。
Aさんは、本屋から駅まで自転車で行き、駅から図書館まで歩いていく。
Bさんは、同じ道を図書館から駅まで自転車で行き、駅から本屋まで歩いていく。
Aさんが本屋を、Bさんが図書館を同時に出発したところ、10分後に出会った。
そのとき、Aさんは歩いており、Bさんは自転車に乗っていた。
また、Bさんが本屋に到着した8分後に、Aさんは図書館に到着した。
ただし、2人の自転車の速さは時速12km、歩く速さは時速4kmとする。
このとき、次の問いに答えよ。

(1)図書館から2人が出会ったところまでの道のりを求めよ。
(2)本屋から駅までの道のりを$x$km、駅から2人が出会ったところまでの道のりを
 $y$kmとして、$x$と$y$についての連立方程式をつくれ。
(3)(2)の連立方程式を解いて、本屋から図書館までの道のりを求めよ。
投稿日:2021.10.25

<関連動画>

【中学数学】1次関数:関数決定マスターへの道 7発目! 平行編Ⅱ

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 直線y=3x+3に平行、x=5のときy=7
この動画を見る 

【中学数学】1次関数の交点を求めよ~どこよりも丁寧に~ 3-4【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2つのグラフの交点の座標を求めよ。
(1) $y=2x+1, y=-5x+2$
(2) $2x+y=3, x-2y=2$
この動画を見る 

難しい連立方程式だけど音楽が気になる動画~全国入試問題解法 #Shorts #数学 #sound

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(3x-2y)^2+8(3x-2y)+16=0 \\
5xy+15x-2y-6=0
\end{array}
\right.
\end{eqnarray}$
連立方程式を解きなさい.

渋谷教育幕張高校過去問
この動画を見る 

【そこで手を止めない!】因数分解:関西学院高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の式を因数分解せよ.
$ (x^2-6x)\times(x^2-6x+17)+72 $

関西学院高等部過去問
この動画を見る 

【高校受験対策】数学-死守17

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$6-2\times (-5)$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{7}{9}$を計算しなさい.

③$2(a+3b)-(a-4b)$を計算しなさい.

④$\sqrt8+\dfrac{6}{\sqrt2}$を計算しなさい.

⑤2次方程式$x^2+2x-15=0$を計算しなさい.

⑥赤,白,青の棒が各1本ずつ箱の中に入っている.
この3本の棒をよく混ぜて1本取り出し,色を確認してからもとにもどします.
このことを2回行うとき,確認した色が2回とも赤か,
2回とも白になる確率を求めなさい.

⑦相似な2つの立体$P,Q$があり,その表面積の比は$4:9$です.
立体$P$の体積が$8cm^3$のとき,立体$Q$の体積を求めなさい.

⑧図1のように,関数$y = ax^2$グラフ上に,$x$座標が-1となる点をとります.
また,$x$軸上の,座標が$ (1,0)$となる点を$B$とします.
直線$AB$の切片が2のとき,$a$の値を求めなさい.

⑨図2のように,直線$\ell$,2点$A,B$があります.
直線$\ell$上にあって,2点$A,B$から等しい距離にある点$P$を,
作図によって求めなさい.
なお,作図に用いた線は消さずに残しなさい.

図は動画内参照
この動画を見る 
PAGE TOP