光文社新書「中学の知識でオイラー公式がわかる」Vol12 eとは何か前編 - 質問解決D.B.(データベース)

光文社新書「中学の知識でオイラー公式がわかる」Vol12 eとは何か前編

問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n$

②$y=e^x$ $y^1=e^x$

③$y=e^x$
 $(0,1)$における接線の傾きが1

④$(log_ex)^1=\displaystyle \frac{1}{x}$
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n$

②$y=e^x$ $y^1=e^x$

③$y=e^x$
 $(0,1)$における接線の傾きが1

④$(log_ex)^1=\displaystyle \frac{1}{x}$
投稿日:2020.01.16

<関連動画>

ε-δ論法 #1 f(x)=√xが連続

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
Question
$f(x)=\sqrt x\ (x\geqq 0)$が連続であることを$\xi -\vartheta$論法で示せ.
この動画を見る 

高専数学 微積I #248(2) 極座標表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq \theta \leqq 4\pi$である.
極座標による曲線$r=\sin^4\dfrac{\theta}{4}$
の長さを求めよ.
この動画を見る 

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第1問(4)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、

$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

【高校数学】 数Ⅱ-65 円と直線の共有点①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円と直線の共有点の座標を求めよう。

①$x^2+y^2=2,2x-y+3=0$

②$x^2+y^2=5,2x-y-5=0$

◎次の円と直線の共有点の個数を求めよう。

③$x^2+y^2=1, y=-2x+3$

④$x^2+y^2=5,2x-y-2-0$
この動画を見る 
PAGE TOP